Confirmation of highly stable 10 nm sized Fe3O4 nanoparticle formation at room temperature and understanding of heat-generation under AC magnetic fields for potential application in hyperthermia

被引:22
作者
Joshi, Rashmi [1 ,2 ]
Singh, Bheeshma Pratap [1 ]
Ningthoujam, Raghumani Singh [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Chem Div, Mumbai 400085, Maharashtra, India
[2] Homi Bhabha Natl Inst, Mumbai 400094, Maharashtra, India
关键词
HYBRID NANOMATERIALS; LUMINESCENCE;
D O I
10.1063/5.0022446
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Iron oxide nanoparticles such as magnetite (Fe3O4) and maghemite (gamma -Fe2O3) have been used in biological applications due to their high biocompatibility, i.e., as a contrast agent in magnetic resonance imaging, a hyperthermia agent in cancer treatment, a drug carrier, etc. There are debates on the formation of Fe3O4 or gamma -Fe2O3 from the different synthesis routes including the co-precipitation method as the bulk size of the particle decreases to nanometers. This study reports on the preparation of pure 10 nm sized Fe3O4 nanoparticles at room temperature so that this can be kept for a long time (a few years) in an inert environment; otherwise, the surface of the Fe3O4 particles gets oxidized and, partly, gets converted into undesirable compounds of iron oxides such as alpha -Fe2O3 and Fe(OH)(3). The formation of Fe3O4 has been ascertained by thermogravimetric analysis, the color of the compound, x-ray photoelectron spectroscopy, and magnetic measurement. It shows the contribution of hysteresis loss, eddy current, and Neel's and Brownian relaxations in heat-generation by applying different alternating current magnetic fields. Power loss follows H-2 dependence. Heat generation of Fe3O4 magnetic nanoparticles in phosphate buffer saline will be the potential candidate of the therapy of cancer.
引用
收藏
页数:8
相关论文
共 27 条
[1]   Spin state of iron in Fe3O4 magnetite and h-Fe3O4 [J].
Bengtson, Amelia ;
Morgan, Dane ;
Becker, Udo .
PHYSICAL REVIEW B, 2013, 87 (15)
[2]   High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach [J].
Cao, Derang ;
Li, Hao ;
Pan, Lining ;
Li, Jianan ;
Wang, Xicheng ;
Jing, Panpan ;
Cheng, Xiaohong ;
Wang, Wenjie ;
Wang, Jianbo ;
Liu, Qingfang .
SCIENTIFIC REPORTS, 2016, 6
[3]  
Cullity B. D., 1972, Introduction to Magnetic Materials
[4]   Microwave Absorption and the Magnetic Hyperthermia Applications of Li0.3Zno3Co0.1Fe2.3O4 Nanoparticles in Multiwalled Carbon Nanotube Matrix [J].
Dalal, Madhumita ;
Greneche, Jean-Marc ;
Satpati, Biswarup ;
Ghzaiel, Tayssir B. ;
Mazaleyrat, Fredric ;
Ningthoujam, Raghumani S. ;
Chakrabarti, Pabitra K. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) :40831-40845
[5]   In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy [J].
Fujii, T ;
de Groot, FMF ;
Sawatzky, GA ;
Voogt, FC ;
Hibma, T ;
Okada, K .
PHYSICAL REVIEW B, 1999, 59 (04) :3195-3202
[6]  
Gehring AU, 2009, GEOPHYS J INT, V179, P1361, DOI [10.1111/j.1365-246X.2009.04348.x, 10.1111/J.1365-246X.2009.04348.X]
[7]   Interfacial stability of ultrathin films of magnetite Fe3O4 (111) on Al2O3(001) grown by ozone-assisted molecular-beam epitaxy [J].
Hong, Hawoong ;
Kim, Jongjin ;
Fang, Xinyue ;
Hong, Seungbum ;
Chiang, T-C .
APPLIED PHYSICS LETTERS, 2017, 110 (02)
[8]  
Joshi R., 2019, J RADIAT CANCER RES, V10, P156, DOI DOI 10.4103/JRCR.JRCR_7_20
[9]   Spin disorder and magnetic anisotropy in Fe3O4 nanoparticles [J].
Lima, E., Jr. ;
Brandl, A. L. ;
Arelaro, A. D. ;
Goya, G. F. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
[10]   Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: Study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells [J].
Majeed, Jerina ;
Pradhan, Lina ;
Ningthoujam, Raghumani Singh ;
Vatsa, Rajesh Kumar ;
Bahadur, Dhirendra ;
Tyagi, Avesh Kumar .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 122 :396-403