Predicting human health from biofluid-based metabolomics using machine learning

被引:25
作者
Evans, Ethan D. [1 ]
Duvallet, Claire [1 ,3 ]
Chu, Nathaniel D. [1 ]
Oberst, Michael K. [2 ]
Murphy, Michael A. [1 ,2 ]
Rockafellow, Isaac [1 ,4 ]
Sontag, David [2 ]
Alm, Eric J. [1 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, CSAIL, Cambridge, MA 02139 USA
[3] Biobot Analyt, Somerville, MA 02143 USA
[4] Superpedestrian, Cambridge, MA 02139 USA
关键词
COLORECTAL-CANCER; MASS-SPECTROMETRY; LUNG-CANCER; SERUM; METABOLITES; BIOMARKERS; EXPOSURE; SAMPLES; XCMS; RISK;
D O I
10.1038/s41598-020-74823-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biofluid-based metabolomics has the potential to provide highly accurate, minimally invasive diagnostics. Metabolomics studies using mass spectrometry typically reduce the high-dimensional data to only a small number of statistically significant features, that are often chemically identified-where each feature corresponds to a mass-to-charge ratio, retention time, and intensity. This practice may remove a substantial amount of predictive signal. To test the utility of the complete feature set, we train machine learning models for health state-prediction in 35 human metabolomics studies, representing 148 individual data sets. Models trained with all features outperform those using only significant features and frequently provide high predictive performance across nine health state categories, despite disparate experimental and disease contexts. Using only non-significant features it is still often possible to train models and achieve high predictive performance, suggesting useful predictive signal. This work highlights the potential for health state diagnostics using all metabolomics features with data-driven analysis.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics [J].
Allwood, J. William ;
Erban, Alexander ;
de Koning, Sjaak ;
Dunn, Warwick B. ;
Luedemann, Alexander ;
Lommen, Arjen ;
Kay, Lorraine ;
Loescher, Ralf ;
Kopka, Joachim ;
Goodacre, Royston .
METABOLOMICS, 2009, 5 (04) :479-496
[2]   The Human Urine Metabolome [J].
Bouatra, Souhaila ;
Aziat, Farid ;
Mandal, Rupasri ;
Guo, An Chi ;
Wilson, Michael R. ;
Knox, Craig ;
Bjorndahl, Trent C. ;
Krishnamurthy, Ramanarayan ;
Saleem, Fozia ;
Liu, Philip ;
Dame, Zerihun T. ;
Poelzer, Jenna ;
Huynh, Jessica ;
Yallou, Faizath S. ;
Psychogios, Nick ;
Dong, Edison ;
Bogumil, Ralf ;
Roehring, Cornelia ;
Wishart, David S. .
PLOS ONE, 2013, 8 (09)
[3]   Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women [J].
Cala, Monica P. ;
Aldana, Julian ;
Medina, Jessica ;
Sanchez, Julian ;
Guio, Jose ;
Wist, Julien ;
Meesters, Roland J. W. .
PLOS ONE, 2018, 13 (02)
[4]   Individual variability in human blood metabolites identifies age-related differences [J].
Chaleckis, Romanas ;
Murakami, Itsuo ;
Takada, Junko ;
Kondoh, Hiroshi ;
Yanagida, Mitsuhiro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (16) :4252-4259
[5]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[6]   Towards Improving Point-of-Care Diagnosis of Non-malaria Febrile Illness: A Metabolomics Approach [J].
Decuypere, Saskia ;
Maltha, Jessica ;
Deborggraeve, Stijn ;
Rattray, Nicholas J. W. ;
Issa, Guiraud ;
Berenger, Kabore ;
Lompo, Palpouguini ;
Tahita, Marc C. ;
Ruspasinghe, Thusitha ;
McConville, Malcolm ;
Goodacre, Royston ;
Tinto, Halidou ;
Jacobs, Jan ;
Carapetis, Jonathan R. .
PLOS NEGLECTED TROPICAL DISEASES, 2016, 10 (03)
[7]   Identification of race-associated metabolite biomarkers for hepatocellular carcinoma in patients with liver cirrhosis and hepatitis C virus infection [J].
Di Poto, Cristina ;
He, Shisi ;
Varghese, Rency S. ;
Zhao, Yi ;
Ferrarini, Alessia ;
Su, Shan ;
Karabala, Abdullah ;
Redi, Mesfin ;
Mamo, Hassen ;
Rangnekar, Amol S. ;
Fishbein, Thomas M. ;
Kroemer, Alexander H. ;
Tadesse, Mahlet G. ;
Roy, Rabindra ;
Sherif, Zaki A. ;
Kumar, Deepak ;
Ressom, Habtom W. .
PLOS ONE, 2018, 13 (03)
[8]  
Dias Daniel A, 2016, EJIFCC, V27, P331
[9]   Concordance of Changes in Metabolic Pathways Based on Plasma Metabolomics and Skeletal Muscle Transcriptomics in Type 1 Diabetes [J].
Dutta, Tumpa ;
Chai, High Seng ;
Ward, Lawrence E. ;
Ghosh, Aditya ;
Persson, Xuan-Mai T. ;
Ford, G. Charles ;
Kudva, Yogish C. ;
Sun, Zhifu ;
Asmann, Yan W. ;
Kocher, Jean-Pierre A. ;
Nair, K. Sreekumaran .
DIABETES, 2012, 61 (05) :1004-1016
[10]   Serum phosphatidylethanolamine levels distinguish benign from malignant solitary pulmonary nodules and represent a potential diagnostic biomarker for lung cancer [J].
Fahrmann, Johannes F. ;
Grapov, Dmitry ;
DeFelice, Brian C. ;
Taylor, Sandra ;
Kim, Kyoungmi ;
Kelly, Karen ;
Wikoff, William R. ;
Pass, Harvey ;
Rom, William N. ;
Fiehn, Oliver ;
Miyamoto, Suzanne .
CANCER BIOMARKERS, 2016, 16 (04) :609-617