Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

被引:78
作者
Zhao, Zhonglong [1 ]
He, Lingchao [1 ]
机构
[1] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
关键词
(3+1)-dimensional potential; Yu-Toda-Sasa-Fukuyama equation; Multiple lump solutions; Rogue wave; CALOGERO-BOGOYAVLENSKII-SCHIFF; ROGUE WAVES; BACKLUND-TRANSFORMATIONS; RATIONAL SOLUTIONS; KINK SOLUTIONS; JIMBO-MIWA; SOLITON; DYNAMICS;
D O I
10.1016/j.aml.2019.03.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bilinear method is employed to construct the multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation in fluid dynamics. The 1-lump solutions, 3-lump solutions and 6-lump solutions are explicitly presented. The centers of the 3-lump wave have a triangular structure, and the 6-lump wave possesses a central peak and five peaks in a ring. The dynamic characteristics of the obtained solutions are analyzed with the aid of numerical simulation. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 32 条
[1]   Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) :1680-1685
[2]  
Clarkson P.A, 2017, ARXIV160900503V2
[3]   Lump-stripe interaction solutions to the potential Yu-Toda-Sasa-Fukuyama equation [J].
Fang, Tao ;
Wang, Yun-Hu .
ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (03) :1481-1495
[4]   Interaction of lumps with a line soliton for the DSII equation [J].
Fokas, AS ;
Pelinovsky, DE ;
Sulem, C .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 :189-198
[5]   Lump solution and its interaction to (3+1)-D potential-YTSF equation [J].
Foroutan, Mohammadreza ;
Manafian, Jalil ;
Ranjbaran, Arash .
NONLINEAR DYNAMICS, 2018, 92 (04) :2077-2092
[6]   Rogue internal waves in the ocean: Long wave model [J].
Grimshaw, R. ;
Pelinovsky, E. ;
Taipova, T. ;
Sergeeva, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :195-208
[7]   Rogue waves in nonlinear Schrodinger models with variable coefficients: Application to Bose-Einstein condensates [J].
He, J. S. ;
Charalampidis, E. G. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. .
PHYSICS LETTERS A, 2014, 378 (5-6) :577-583
[8]   Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation [J].
Lu, Xing ;
Chen, Shou-Ting ;
Ma, Wen-Xiu .
NONLINEAR DYNAMICS, 2016, 86 (01) :523-534
[9]   Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation [J].
Lu, Xing ;
Ma, Wen-Xiu .
NONLINEAR DYNAMICS, 2016, 85 (02) :1217-1222
[10]  
Ma WX, 2016, NONLINEAR DYNAM, V84, P923, DOI 10.1007/s11071-015-2539-6