Exact Solutions of Coupled Sine-Gordon Equations Using the Simplest Equation Method

被引:8
作者
Zhao, Yun-Mei [1 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; MATHEMATICAL PHYSICS; NONLINEAR EQUATIONS; DYNAMICS; MODEL; PDES;
D O I
10.1155/2014/534346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The simplest equation method has been used for finding the exact solutions of coupled sine-Gordon equations. Such equations have some useful applications in physics and biology, so finding their exact solutions is of great importance.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
Abdusalam HA, 2005, INT J NONLIN SCI NUM, V6, P99
[2]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[3]   The extended (G′/G)-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations [J].
Guo, Shimin ;
Zhou, Yubin .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (09) :3214-3221
[4]   Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik-Novikov-Veselov system [J].
Hu, HC ;
Tang, XY ;
Lou, SY ;
Liu, QP .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :327-334
[6]   On the exchange of energy in coupled Klein-Gordon equations [J].
Khusnutdinova, KR ;
Pelinovsky, DE .
WAVE MOTION, 2003, 38 (01) :1-10
[7]  
Kontorova T.A., 1939, Zh._Eksp. Teor._Fiz, V8, P89
[8]   Exact solitary waves of the Fisher equation [J].
Kudryashov, NA .
PHYSICS LETTERS A, 2005, 342 (1-2) :99-106
[9]   Simplest equation method to look for exact solutions of nonlinear differential equations [J].
Kudryashov, NA .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1217-1231
[10]   DARBOUX TRANSFORMS, DEEP REDUCTIONS AND SOLITONS [J].
LEBLE, SB ;
USTINOV, NV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19) :5007-5016