Boosting the Optimization of Lithium Metal Batteries by Molecular Dynamics Simulations: A Perspective

被引:91
作者
Sun, Yawen [1 ]
Yang, Tingzhou [1 ]
Ji, Haoqing [1 ]
Zhou, Jinqiu [1 ]
Wang, Zhenkang [1 ]
Qian, Tao [1 ]
Yan, Chenglin [1 ]
机构
[1] Soochow Univ, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
electrode; electrolyte interfaces; electrolytes; Li deposition behavior; Li metal batteries; molecular dynamics simulations; SOLID-ELECTROLYTE INTERPHASE; LI-ION CONDUCTIVITY; ELECTROCHEMICAL STABILITY; TRANSPORT; SOLVATION; ANODE; ELECTRODEPOSITION; IMPROVEMENT; MECHANISM; DIFFUSION;
D O I
10.1002/aenm.202002373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li metal battery is attracting more and more attention in the field of electric vehicles because of its high theoretical capacity and low electrochemical potential. But its inherent disadvantages including uncontrolled lithium dendrites, high chemical activity, and large volume changes hold back the large-scale application of stable Li metal anodes. Recently, various computational studies have been used to facilitate the rationalization of experimental observed phenomenon. In this review, the progress of molecular dynamics simulations in Li metal batteries is highlighted. Molecular dynamics simulations can predict how selected atoms in different systems of Li metal battery will move over time based on a general model of the physics governing interatomic interactions. The analysis of the transport structure of Li ions, the electrochemical process at electronic, atomic, or molecular level, the Li(+)transport mechanism, and the Li deposition behavior are described in detail. Some suggestions are also made about the further potential of molecular dynamics simulations do in Li metal batteries are also made.
引用
收藏
页数:16
相关论文
共 91 条
[1]  
[Anonymous], 2018, ANGEW CHEM-GER EDIT
[2]   Annealing kinetics of electrodeposited lithium dendrites [J].
Aryanfar, Asghar ;
Cheng, Tao ;
Colussi, Agustin J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Hoffmann, Michael R. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (13)
[3]   Thermal relaxation of lithium dendrites [J].
Aryanfar, Asghar ;
Brooks, Daniel J. ;
Colussi, Agustin J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Hoffmann, Michael R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :8000-8005
[4]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[5]   High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte [J].
Bai, Songyan ;
Sun, Yang ;
Yi, Jin ;
He, Yibo ;
Qiao, Yu ;
Zhou, Haoshen .
JOULE, 2018, 2 (10) :2117-2132
[6]   Electrolyte solutions for technology - new aspects and approaches [J].
Barthel, J ;
Gores, HJ ;
Neueder, R ;
Schmid, A .
PURE AND APPLIED CHEMISTRY, 1999, 71 (09) :1705-1715
[7]   Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations [J].
Bedrov, Dmitry ;
Borodin, Oleg ;
Hooper, Justin B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30) :16098-16109
[8]   Buildup of the Solid Electrolyte Interphase on Lithium-Metal Anodes: Reactive Molecular Dynamics Study [J].
Bertolini, Samuel ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (20) :10783-10791
[9]   Molecular dynamics simulation study of LiI-doped diglyme and poly(ethylene oxide) solutions [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (33) :8017-8022
[10]   Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations [J].
Borodin, O ;
Smith, GD .
MACROMOLECULES, 2006, 39 (04) :1620-1629