Surface Modification of a Stable CdSeZnS/ZnS Alloy Quantum Dot for Immunoassay

被引:6
作者
An, Jaehyun [1 ]
Huynh, Kim-Hung [1 ]
Ha, Yuna [1 ]
Jung, Heung Su [2 ]
Kim, Hyung-Mo [1 ]
Kim, Dong-Min [1 ]
Kim, Jaehi [1 ]
Pham, Xuan-Hung [1 ]
Kim, Dong-Eun [1 ]
Ho, Jin-Nyoung [3 ]
Lee, Sangchul [3 ]
Lee, Ho-Young [4 ]
Jeong, Dae Hong [5 ]
Jun, Bong-Hyun [1 ]
机构
[1] Konkuk Univ, Dept Biosci & Biotechnol, Seoul 143701, South Korea
[2] Co GLOBAL ZEUS, Osan 18364, Gyeonggi Do, South Korea
[3] Seoul Natl Univ, Dept Urol, Bundang Hosp, Seoul 13620, South Korea
[4] Seoul Natl Univ, Dept Nucl Med, Bundang Hosp, Seoul 13620, South Korea
[5] Seoul Natl Univ, Dept Chem Educ, Seoul 151019, South Korea
基金
新加坡国家研究基金会;
关键词
C-REACTIVE PROTEIN; SHELL THICKNESS; FABRICATION; CDSE; BIOCONJUGATION; NANOPARTICLES; PROBES; YIELD;
D O I
10.1155/2020/4937049
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dots (QDs) are powerful materials in various bioapplications based on their excellent optical and electronic properties. For the application of various fields of QDs, surface modification of QDs is necessary. However, surface modification in QDs may result in a reduction in quantum yield (QY). This reduction of QY causes many weaknesses in the biological application of QDs. In this study, CdSeZnS/ZnS alloy QDs were used to prepare antibody-conjugated QDs for a sandwich immunoassay. The alloy QDs displayed a QY of 84.5% that was maintained at 83.0% (98.2% of QY was maintained) after surface modification with the anti-rabbit IgG as a model study. Surface-modified QDs successfully detected their corresponding target through antibody-antigen binding. The limit of detection was 1.1x10(2) ng mL(-1) for rabbit IgG.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Tuning the Optical Properties of Silicon Quantum Dots via Surface Functionalization with Conjugated Aromatic Fluorophores [J].
Abdelhameed, Mohammed ;
Martir, Diego Rota ;
Chen, Shalimar ;
Xu, William Z. ;
Oyeneye, Olabode O. ;
Chakrabarti, Subrata ;
Zysman-Colman, Eli ;
Charpentier, Paul A. .
SCIENTIFIC REPORTS, 2018, 8
[2]   Review of Core/Shell Quantum Dots Technology Integrated into Building's Glazing [J].
AbouElhamd, Amira R. ;
Al-Sallal, Khaled A. ;
Hassan, Ahmed .
ENERGIES, 2019, 12 (06)
[3]   A Review Approaches to Identify Enteric Bacterial Pathogens [J].
Amani, Jafar ;
Mirhosseini, Seyed Ali ;
Fooladi, Abbas Ali Imani .
JUNDISHAPUR JOURNAL OF MICROBIOLOGY, 2015, 8 (02)
[4]   Pharmaceutical and biomedical applications of quantum dots [J].
Bajwa, Neha ;
Mehra, Neelesh K. ;
Jain, Keerti ;
Jain, Narendra K. .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2016, 44 (03) :758-768
[5]   Verification of antibody labelling efficiency as an important step in ELISA/QLISA development [J].
Cadkova, Michaela ;
Dvorakova, Veronika ;
Metelka, Radovan ;
Bilkova, Zuzana ;
Korecka, Lucie .
MONATSHEFTE FUR CHEMIE, 2016, 147 (01) :69-73
[6]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[7]   Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications [J].
Chandan, H. R. ;
Schiffman, Jessica D. ;
Balakrishna, R. Geetha .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 :1191-1214
[8]   Shell thickness effects on quantum dot brightness and energy transfer [J].
Chern, Margaret ;
Nguyen, Thuy T. ;
Mahler, Andrew H. ;
Dennis, Allison M. .
NANOSCALE, 2017, 9 (42) :16446-16458
[9]   Applications of gold nanoparticles in virus detection [J].
Draz, Mohamed Shehata ;
Shafiee, Hadi .
THERANOSTICS, 2018, 8 (07) :1985-2017
[10]   Silanization of quantum dots: Challenges and perspectives [J].
Drozd, Daniil ;
Zhang, Huiyan ;
Goryacheva, Irina ;
De Saeger, Sarah ;
Beloglazova, Natalia, V .
TALANTA, 2019, 205