Numerical approaches for systems of Volterra-Fredholm integral equations

被引:11
|
作者
Calio, F. [1 ]
Garralda-Guillem, A. I. [2 ]
Marchetti, E. [1 ]
Ruiz Galan, M. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Granada, ETS Ingn Edificac, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Systems of Volterra-Fredholm integral equations; Collocation methods; Fixed point methods; Splines; Schauder bases; QUASI-INTERPOLATORY SPLINES; 2ND KIND;
D O I
10.1016/j.amc.2013.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce two numerical methods for solving systems of Volterra-Fredholm integral equations. In the nonlinear case we suggest a fixed point method, where the iterations are perturbed in a suitable way according to a Schauder basis in the Banach space of continuous functions C[a, b](2). In the linear case we propose a collocation method based on a particular class of approximating functions. In both methods, convergence analysis and/or low computational cost are analysed, taking into account the properties of the basis under consideration. Numerical results confirm the theoretical study. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:811 / 821
页数:11
相关论文
共 50 条
  • [1] A NUMERICAL SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
    Zarebnia, M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2013, 3 (01): : 95 - 104
  • [2] On the Numerical Solutions for Nonlinear Volterra-Fredholm Integral Equations
    Darania, Parviz
    Pishbin, Saeed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [3] Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations using Taylor Expansion Method
    Didgar, Mohsen
    Vahidi, Alireza
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 31 - 50
  • [4] Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials
    Gecmen, Merve Zeynep
    Celik, Ercan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) : 11166 - 11173
  • [5] A Simple Approach to Volterra-Fredholm Integral Equations
    He, Ji-Huan
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1184 - 1186
  • [6] A Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations
    Borzabadi, Akbar Hashemi
    Heidari, Mohammad
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 1 - 10
  • [7] On Some Iterative Numerical Methods for Mixed Volterra-Fredholm Integral Equations
    Micula, Sanda
    SYMMETRY-BASEL, 2019, 11 (10):
  • [8] NUMERICAL SOLUTION FOR STOCHASTIC VOLTERRA-FREDHOLM INTEGRAL EQUATIONS WITH DELAY ARGUMENTS
    Yao, Kutorzi edwin
    Zhang, Yuxue
    Shi, Yufeng
    ACTA POLYTECHNICA, 2024, 64 (02) : 128 - 141
  • [9] Numerical solution of Volterra-Fredholm integral equations based on ε-SVR method
    Xu, Haitao
    Fan, Liya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 298 : 201 - 210
  • [10] A hybrid-based numerical method for a class of systems of mixed Volterra-Fredholm integral equations
    Afiatdoust, F.
    Hosseini, M. M.
    Heydari, M. H.
    Moghadam, M. Mohseni
    RESULTS IN APPLIED MATHEMATICS, 2024, 22