FIRST AND SECOND ORDER OPTIMALITY CONDITIONS FOR THE CONTROL OF FOKKER-PLANCK EQUATIONS

被引:12
作者
Aronna, M. Soledad [1 ]
Troeltzsch, Fredi [2 ]
机构
[1] Fundacao Getulio Vargas, Escola Matemat, Praia Botafogo 190, BR-22250900 Rio De Janeiro, Brazil
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
optimal control; Fokker-Planck equation; existence of optimal control; first order optimality conditions; second order optimality conditions;
D O I
10.1051/cocv/2021014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we study an optimal control problem subject to the Fokker-Planck equation partial derivative(t)rho - nu Delta rho - div (rho B[u]) = 0. The control variable u is time-dependent and possibly multidimensional, and the function B depends on the space variable and the control. The cost functional is of tracking type and includes a quadratic regularization term on the control. For this problem, we prove existence of optimal controls and first order necessary conditions. Main emphasis is placed on second order necessary and sufficient conditions.
引用
收藏
页数:26
相关论文
共 37 条
  • [1] Boltzmann-type control of opinion consensus through leaders
    Albi, G.
    Pareschi, L.
    Zanella, M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2028):
  • [2] Mean Field Control Hierarchy
    Albi, Giacomo
    Choi, Young-Pil
    Fornasier, Massimo
    Kalise, Dante
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 76 (01) : 93 - 135
  • [3] A Fokker-Planck control framework for multidimensional stochastic processes
    Annunziato, M.
    Borzi, A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 487 - 507
  • [4] Optimal Control of Probability Density Functions of Stochastic Processes
    Annunziato, M.
    Borzi, A.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (04) : 393 - 407
  • [5] A Fokker-Planck control framework for stochastic systems
    Annunziato, Mario
    Borzi, Alfio
    [J]. EMS SURVEYS IN MATHEMATICAL SCIENCES, 2018, 5 (1-2) : 65 - 98
  • [6] [Anonymous], 2012, FINITE ELEMENT METHO
  • [7] [Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
  • [8] [Anonymous], 1995, ABSTRACT LINEAR THEO
  • [9] Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations
    Aronna, M. Soledad
    Bonnans, J. Frederic
    Kroner, Axel
    [J]. MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 717 - 757
  • [10] Ashyralyev A, 1994, OPERATOR THEORY ADV