Water droplet friction and rolling dynamics on superhydrophobic surfaces

被引:95
作者
Backholm, Matilda [1 ]
Molpeceres, Daniel [1 ]
Vuckovac, Maja [1 ]
Nurmi, Heikki [1 ]
Hokkanen, Matti J. [1 ,2 ]
Jokinen, Ville [3 ]
Timonen, Jaakko V. I. [1 ]
Ras, Robin H. A. [1 ,4 ]
机构
[1] Aalto Univ, Dept Appl Phys, POB 15100, Espoo 02150, Finland
[2] Aalto Univ, Dept Elect Engn & Automat, POB 15500, Espoo 01250, Finland
[3] Aalto Univ, Dept Chem & Mat Sci, POB 16100, Espoo 02150, Finland
[4] Aalto Univ, Dept Bioprod & Biosyst, POB 16000, Espoo 02150, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
FORCE MEASUREMENTS; CONTACT ANGLES; SINGLE CELLS; LIQUID-DROPS; DETACHMENT; TENSION;
D O I
10.1038/s43246-020-00065-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Superhydrophobicity is a remarkable surface property found in nature and mimicked in many engineering applications, including anti-wetting, anti-fogging, and anti-fouling coatings. As synthetic superhydrophobic coatings approach the extreme non-wetting limit, quantification of their slipperiness becomes increasingly challenging: although contact angle goniometry remains widely used as the gold standard method, it has proven insufficient. Here, micropipette force sensors are used to directly measure the friction force of water droplets moving on super-slippery superhydrophobic surfaces that cannot be quantified with contact angle goniometry. Superhydrophobic etched silicon surfaces with tunable slipperiness are investigated as model samples. Micropipette force sensors render up to three orders of magnitude better force sensitivity than using the indirect contact angle goniometry approach. We directly measure a friction force as low as 74nN for a millimetric water droplet moving on the most slippery surface. Finally, we combine micropipette force sensors with particle image velocimetry and reveal purely rolling water droplets on superhydrophobic surfaces.
引用
收藏
页数:8
相关论文
共 47 条
[1]   The effects of viscosity on the undulatory swimming dynamics of C. elegans [J].
Backholm, M. ;
Kasper, A. K. S. ;
Schulman, R. D. ;
Ryu, W. S. ;
Dalnoki-Veress, K. .
PHYSICS OF FLUIDS, 2015, 27 (09)
[2]   Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms [J].
Backholm, Matilda ;
Baeumchen, Oliver .
NATURE PROTOCOLS, 2019, 14 (02) :594-615
[3]   The nematode C. elegans as a complex viscoelastic fluid [J].
Backholm, Matilda ;
Ryu, William S. ;
Dalnoki-Veress, Kari .
EUROPEAN PHYSICAL JOURNAL E, 2015, 38 (05)
[4]   Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm [J].
Backholm, Matilda ;
Ryu, William S. ;
Dalnoki-Veress, Kari .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (12) :4528-4533
[5]   Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors [J].
Boeddeker, Thomas J. ;
Karpitschka, Stefan ;
Kreis, Christian T. ;
Magdelaine, Quentin ;
Baeumchen, Oliver .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (162)
[6]   Characterization of super liquid-repellent surfaces [J].
Butt, Hans-Juergen ;
Roisman, Ilia V. ;
Brinkmann, Martin ;
Papadopoulos, Periklis ;
Vollmer, Doris ;
Semprebon, Ciro .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2014, 19 (04) :343-354
[7]   Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface - art. no. 066001 [J].
Choi, CH ;
Kim, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[8]   Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique [J].
Colbert, M. -J. ;
Raegen, A. N. ;
Fradin, C. ;
Dalnoki-Veress, K. .
EUROPEAN PHYSICAL JOURNAL E, 2009, 30 (02) :117-121
[9]   Squeezing and Detachment of Living Cells [J].
Colbert, Marie Josee ;
Brochard-Wyart, Francoise ;
Fradin, Cecile ;
Dalnoki-Veress, Kari .
BIOPHYSICAL JOURNAL, 2010, 99 (11) :3555-3562
[10]   Hydration lubrication of polyzwitterionic brushes leads to nearly friction- and adhesion-free droplet motion [J].
Daniel, Dan ;
Chia, Alfred Yu Ting ;
Moh, Lionel Chuan Hui ;
Liu, Rongrong ;
Koh, Xue Qi ;
Zhang, Xing ;
Tomczak, Nikodem .
COMMUNICATIONS PHYSICS, 2019, 2 (1)