Convergence rate of Cesaro means of Fourier-Laplace series

被引:6
作者
Li, Luoqing [1 ]
Yu, Chunwu
机构
[1] Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Cesaro mean; almost everywhere convergence; spherical function approximation;
D O I
10.1016/j.jmaa.2006.01.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence rate of Fourier-Laplace series in logarithmic subclasses of L-2(Sigma(d)) defined in terms of moduli of continuity is of interest. Lin and Wang [C. Lin, K. Wang, Convergence rate of Fourier-Laplace series of L-2-functions, J. Approx. Theory 128 (2004) 103-114] recently presented a characterization of those subclasses and provided the almost everywhere convergence rates of Fourier-Laplace series in those subclasses. In this note, the almost everywhere convergence rates of the Cesaro means for Fourier-Laplace series of the logarithmic subclasses are obtained. The strong approximation order of the Cesaro means and the partial summation operators are also presented. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:808 / 818
页数:11
相关论文
共 10 条
[1]  
[Anonymous], 1971, SINGULAR INTEGRALS D, DOI DOI 10.1515/9781400883882
[2]  
Berens H., 1968, PUBL RES I MATH SCI, V4, P201
[3]   CESARO MEANS AND DEVELOPMENT OF MULTIPLIERS FOR SPHERICAL HARMONICS [J].
BONAMI, A ;
CLERC, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 183 (SEP) :223-263
[4]   Averages on caps of Sd-1 [J].
Ditzian, Z ;
Runovskii, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (01) :260-274
[5]  
Guzman M., 1981, REAL VARIABLE METHOD
[6]  
Kalybin G. A., 1987, SOV MATH DOKL, V35, P619
[7]   Convergence rate of Fourier-Laplace series of L2-functions [J].
Lin, CC ;
Wang, KY .
JOURNAL OF APPROXIMATION THEORY, 2004, 128 (02) :103-114
[8]   OSCILLATORY INTEGRALS AND SPHERICAL-HARMONICS [J].
SOGGE, CD .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :43-65
[9]  
Wang Kunyang, 2000, HARMONIC ANAL APPROX
[10]  
Zygmund A., 1968, TRIGONOMETRIC SERIES