The diffusive epidemic process on Barabasi-Albert networks

被引:7
作者
Alves, T. F. A. [1 ]
Alves, G. A. [1 ]
Macedo-Filho, A. [2 ]
Ferreira, R. S. [3 ]
Lima, F. W. S. [1 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Estadual Piaui, Campus Prof Antonio Geovanne Alves de Sousa, Piripiri, PI, Brazil
[3] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, BR-35931008 Joao Monlevade, MG, Brazil
关键词
absorbing states; agent-based models; critical exponents and amplitudes; random graphs; networks; MAJORITY-VOTE MODEL; COMPLEX; CORONAVIRUS; EVOLUTION; BEHAVIOR;
D O I
10.1088/1742-5468/abefe4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a modified diffusive epidemic process (DEP) that has a finite threshold on scale-free graphs, motivated by the COVID-19 pandemic. The DEP describes the epidemic spreading of a disease in a non-sedentary population, which can describe the spreading of a real disease. Our main modification is to use the Gillespie algorithm with a reaction time t(max), exponentially distributed with mean inversely proportional to the node population in order to model the individuals' interactions. Our simulation results of the modified model on Barabasi-Albert networks are compatible with a continuous absorbing-active phase transition when increasing the average concentration. The transition obeys the mean-field critical exponents beta = 1, gamma' = 0 and nu(perpendicular to) = 1/2. In addition, the system presents logarithmic corrections with pseudo-exponents beta=gamma'=-3/2 on the order parameter and its fluctuations, respectively. The most evident implication of our simulation results is if the individuals avoid social interactions in order to not spread a disease, this leads the system to have a finite threshold in scale-free graphs.
引用
收藏
页数:18
相关论文
共 63 条
[11]   Nature of the Epidemic Threshold for the Susceptible-Infected-Susceptible Dynamics in Networks [J].
Boguna, Marian ;
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2013, 111 (06)
[12]  
Broadbent S. R., 1957, MATH P CAMBRIDGE PHI, V53, P629, DOI [10.1017/S0305004100032680, DOI 10.1017/S0305004100032680]
[13]   A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model [J].
Carcione, Jose M. ;
Santos, Juan E. ;
Bagaini, Claudio ;
Ba, Jing .
FRONTIERS IN PUBLIC HEALTH, 2020, 8
[14]  
Cohen R., 2010, Complex networks: structure, robustness and function
[15]   Reaction-diffusion processes and metapopulation models in heterogeneous networks [J].
Colizza, Vittoria ;
Pastor-Satorras, Romualdo ;
Vespignani, Alessandro .
NATURE PHYSICS, 2007, 3 (04) :276-282
[16]   Criticality of a contact process with coupled diffusive and nondiffusive fields [J].
da Costa, N. V. ;
Fulco, U. L. ;
Lyra, M. L. ;
Gleria, I. M. .
PHYSICAL REVIEW E, 2007, 75 (03)
[17]   Critical properties of the SIS model dynamics on the Apollonian network [J].
da Silva, L. F. ;
Costa Filho, R. N. ;
Cunha, A. R. ;
Macedo-Filho, A. ;
Serva, M. ;
Fulco, U. L. ;
Albuquerque, E. L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[18]   The nature of the absorbing-state phase transition in the diffusive epidemic process [J].
Dickman, Ronald ;
Maia, Daniel Souza .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (40)
[19]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[20]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187