The diffusive epidemic process on Barabasi-Albert networks

被引:7
作者
Alves, T. F. A. [1 ]
Alves, G. A. [1 ]
Macedo-Filho, A. [2 ]
Ferreira, R. S. [3 ]
Lima, F. W. S. [1 ]
机构
[1] Univ Fed Piaui, Dept Fis, BR-57072970 Teresina, PI, Brazil
[2] Univ Estadual Piaui, Campus Prof Antonio Geovanne Alves de Sousa, Piripiri, PI, Brazil
[3] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, BR-35931008 Joao Monlevade, MG, Brazil
关键词
absorbing states; agent-based models; critical exponents and amplitudes; random graphs; networks; MAJORITY-VOTE MODEL; COMPLEX; CORONAVIRUS; EVOLUTION; BEHAVIOR;
D O I
10.1088/1742-5468/abefe4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a modified diffusive epidemic process (DEP) that has a finite threshold on scale-free graphs, motivated by the COVID-19 pandemic. The DEP describes the epidemic spreading of a disease in a non-sedentary population, which can describe the spreading of a real disease. Our main modification is to use the Gillespie algorithm with a reaction time t(max), exponentially distributed with mean inversely proportional to the node population in order to model the individuals' interactions. Our simulation results of the modified model on Barabasi-Albert networks are compatible with a continuous absorbing-active phase transition when increasing the average concentration. The transition obeys the mean-field critical exponents beta = 1, gamma' = 0 and nu(perpendicular to) = 1/2. In addition, the system presents logarithmic corrections with pseudo-exponents beta=gamma'=-3/2 on the order parameter and its fluctuations, respectively. The most evident implication of our simulation results is if the individuals avoid social interactions in order to not spread a disease, this leads the system to have a finite threshold in scale-free graphs.
引用
收藏
页数:18
相关论文
共 63 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Phase diagram of a continuous opinion dynamics on Barabasi-Albert networks [J].
Alves, T. F. A. ;
Alves, G. A. ;
Lima, F. W. S. ;
Macedo-Filho, A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (03)
[3]  
[Anonymous], 1981, Stochastic Processes in Physics and Chemistry
[4]   Universality classes of the absorbing state transition in a system with interacting static and diffusive populations [J].
Argolo, C. ;
Quintino, Yan ;
Siqueira, Y. ;
Gleria, Iram ;
Lyra, M. L. .
PHYSICAL REVIEW E, 2009, 80 (06)
[5]   Evolution of the social network of scientific collaborations [J].
Barabási, AL ;
Jeong, H ;
Néda, Z ;
Ravasz, E ;
Schubert, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) :590-614
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[8]  
Barrat A., 2008, Dynamical Processes on Complex Networks
[9]   Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm [J].
Bernstein, D .
PHYSICAL REVIEW E, 2005, 71 (04)
[10]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308