Gain in p-doped quantum dot lasers

被引:32
作者
Smowton, P. M. [1 ]
Sandall, I. C.
Liu, H. Y.
Hopkinson, M.
机构
[1] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
[2] Univ Sheffield, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2405738
中图分类号
O59 [应用物理学];
学科分类号
摘要
We directly measure the gain and threshold characteristics of three quantum dot laser structures that are identical except for the level of modulation doping. The maximum modal gain increases at fixed quasi-Fermi level separation as the nominal number of acceptors increases from 0 to 15 to 50 per dot. These results are consistent with a simple model where the available electrons and holes are distributed over the dot, wetting layer, and quantum well states according to Fermi-Dirac statistics. The nonradiative recombination rate at fixed quasi-Fermi level separation is also higher for the p-doped samples leading to little increase in the gain that can be achieved at a fixed current density. However, we demonstrate that in other similar samples, where the difference in the measured nonradiative recombination is less pronounced, p doping can lead to a higher modal gain at a fixed current density. (c) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Characterization of semiconductor laser gain media by the segmented contact method [J].
Blood, P ;
Lewis, GM ;
Smowton, PM ;
Summers, H ;
Thomson, J ;
Lutti, J .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (05) :1275-1282
[2]   EXCELLENT UNIFORMITY AND VERY LOW (LESS-THAN-50 A/CM2) THRESHOLD CURRENT-DENSITY STRAINED INGAAS QUANTUM-WELL DIODE-LASERS ON GAAS SUBSTRATE [J].
CHAND, N ;
BECKER, EE ;
VANDERZIEL, JP ;
CHU, SNG ;
DUTTA, NK .
APPLIED PHYSICS LETTERS, 1991, 58 (16) :1704-1706
[3]   Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed [J].
Deppe, DG ;
Huang, H ;
Shchekin, OB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (12) :1587-1593
[4]   Carrier distribution, gain, and lasing in 1.3-μm InAs-InGaAs quantum-dot lasers [J].
Dikshit, AA ;
Pikal, JM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (02) :105-112
[5]   The role of Auger recombination in the temperature-dependent output characteristics (T0 = ∞) of p-doped 1.3 μm quantum dot lasers [J].
Fathpour, S ;
Mi, Z ;
Bhattacharya, P ;
Kovsh, AR ;
Mikhrin, SS ;
Krestnikov, IL ;
Kozhukhov, AV ;
Ledentsov, NN .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5164-5166
[6]   Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots [J].
Fry, PW ;
Itskevich, IE ;
Mowbray, DJ ;
Skolnick, MS ;
Finley, JJ ;
Barker, JA ;
O'Reilly, EP ;
Wilson, LR ;
Larkin, IA ;
Maksym, PA ;
Hopkinson, M ;
Al-Khafaji, M ;
David, JPR ;
Cullis, AG ;
Hill, G ;
Clark, JC .
PHYSICAL REVIEW LETTERS, 2000, 84 (04) :733-736
[7]   Bistable operation of a two-section 1.3-μm InAs quantum dot laser -: Absorption saturation and the quantum confined Stark effect [J].
Huang, XD ;
Stintz, A ;
Li, H ;
Rice, A ;
Liu, GT ;
Lester, LF ;
Cheng, J ;
Malloy, KJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (03) :414-417
[8]   HETEROJUNCTION BAND OFFSETS AND EFFECTIVE MASSES IN III-V QUATERNARY ALLOYS [J].
KRIJN, MPCM .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1991, 6 (01) :27-31
[9]   High power temperature-insensitive 1.3 μm InAs/InGaAs/GaAs quantum dot lasers [J].
Mikhrin, SS ;
Kovsh, AR ;
Krestnikov, IL ;
Kozhukhov, AV ;
Livshits, DA ;
Ledentsov, NN ;
Shernyakov, YM ;
Novikov, II ;
Maximov, MV ;
Ustinov, VM ;
Alferov, ZI .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (05) :340-342
[10]   Effect of Auger recombination on the performance of p-doped quantum dot lasers [J].
Mokkapati, S ;
Buda, M ;
Tan, HH ;
Jagadish, C .
APPLIED PHYSICS LETTERS, 2006, 88 (16)