A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2

被引:308
作者
Gild, Joshua [1 ]
Braun, Jeffrey [2 ]
Kaufmann, Kevin [3 ]
Marin, Eduardo [3 ]
Harrington, Tyler [1 ]
Hopkins, Patrick [2 ]
Vecchio, Kenneth [1 ,3 ]
Luo, Jian [1 ,3 ]
机构
[1] Univ Calif San Diego, Program Mat Sci & Engn, La Jolla, CA 92093 USA
[2] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[3] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
High-entropy ceramics; High-entropy silicide; Thermal conductivity; Hardness; C40 crystal structure; MOLYBDENUM DISILICIDE; RARE-EARTH; CARBIDE; ALLOYS; WSI2; MOSI2; CONDUCTIVITY; FILMS;
D O I
10.1016/j.jmat.2019.03.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-entropy metal disilicide, (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si-2, has been successfully synthesized. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and electron backscatter diffraction (EBSD) collectively show the formation of a single high-entropy silicide phase. This high-entropy (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si-2 possesses a hexagonal C40 crystal structure with ABC stacking sequence and a space group of P6(2)22. This discovery expands the known families of high-entropy materials from metals, oxides, borides, carbides, and nitrides to a silicide, for the first time to our knowledge, as well as demonstrating that a new, non-cubic, crystal structure (with lower symmetry) can be made into high-entropy phase. This(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si-2 exhibits high nanohardness of 16.7 +/- 1.9 GPa and Vickers hardness of 11.6 +/- 0.5 GPa. Moreover, it has a low thermal conductivity of 6.9 +/- 1.1 W m(-1) K-1, which is approximately one order of magnitude lower than that of the widely-used tetragonal MoSi2 and similar to 1/3 of those reported values for the hexagonal NbSi2 and TaSi2 with the same crystal structure. (C) 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.
引用
收藏
页码:337 / 343
页数:7
相关论文
共 65 条
[1]  
[Anonymous], PLENUM
[2]  
[Anonymous], MRS ONLINE P LIB ARC
[3]  
[Anonymous], PROG MATER SCI
[4]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[5]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[6]   Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings [J].
Braic, V. ;
Vladescu, Alina ;
Balaceanu, M. ;
Luculescu, C. R. ;
Braic, M. .
SURFACE & COATINGS TECHNOLOGY, 2012, 211 :117-121
[7]   Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides [J].
Braun, Jeffrey L. ;
Rost, Christina M. ;
Lim, Mina ;
Giri, Ashutosh ;
Olson, David H. ;
Kotsonis, George N. ;
Stan, Gheorghe ;
Brenner, Donald W. ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
ADVANCED MATERIALS, 2018, 30 (51)
[8]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[9]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[10]   Processing and Properties of High-Entropy Ultra-High Temperature Carbides [J].
Castle, Elinor ;
Csanadi, Tamas ;
Grasso, Salvatore ;
Dusza, Jan ;
Reece, Michael .
SCIENTIFIC REPORTS, 2018, 8