Estimation and inference for exponential smooth transition nonlinear volatility models

被引:13
作者
Chen, Cathy W. S. [1 ]
Gerlach, Richard H. [2 ]
Choy, S. T. Boris [2 ]
Lin, Celine [1 ]
机构
[1] Feng Chia Univ, Grad Inst Stat & Actuarial Sci, Taichung, Taiwan
[2] Univ Sydney, Discipline Operat Management & Econometr, Sydney, NSW 2006, Australia
关键词
Asymmetric; Bayesian inference; Heteroskedastic; Markov chain Monte Carlo (MCMC); Normal scale mixtures distribution; Smooth transition autoregression; THRESHOLD HETEROSKEDASTIC MODELS; REAL EXCHANGE-RATES; AUTOREGRESSIVE MODELS; STOCK RETURNS; VARIANCE; RANGE;
D O I
10.1016/j.jspi.2009.09.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A family of threshold nonlinear generalised autoregressive conditionally heteroscedastic models is considered, that allows smooth transitions between regimes, capturing size asymmetry via an exponential smooth transition function. A Bayesian approach is taken and an efficient adaptive sampling scheme is employed for inference, including a novel extension to a recently proposed prior for the smoothing parameter that solves a likelihood identification problem. A simulation study illustrates that the sampling scheme performs well, with the chosen prior kept close to uninformative, while successfully ensuring identification of model parameters and accurate inference for the smoothing parameter. An empirical study confirms the potential suitability of the model, highlighting the presence of both mean and volatility (size) asymmetry; while the model is favoured over modern, popular model competitors, including those with sign asymmetry, via the deviance information criterion. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 733
页数:15
相关论文
共 42 条
[1]   Range-based estimation of stochastic volatility models [J].
Alizadeh, S ;
Brandt, MW ;
Diebold, FX .
JOURNAL OF FINANCE, 2002, 57 (03) :1047-1091
[2]  
Anderson H.M., 1999, NONLINEAR TIME SERIE, P191, DOI DOI 10.1007/978-1-4615-5129-4
[3]  
[Anonymous], 2001, RECHERCHES EC LOUVAI
[4]   ESTIMATING TRANSITION BETWEEN 2 INTERSECTING STRAIGHT LINES [J].
BACON, DW ;
WATTS, DG .
BIOMETRIKA, 1971, 58 (03) :525-&
[5]  
Bauwens L., 1999, BAYESIAN INFERENCE D
[6]  
Black F., 1976, P 1976 M AM STAT ASS, P171
[7]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[8]  
Brooks C, 2001, J FORECASTING, V20, P135, DOI 10.1002/1099-131X(200103)20:2<135::AID-FOR780>3.0.CO
[9]  
2-R
[10]  
Chan K.S., 1986, Journal of time series analysis, V7, P179, DOI DOI 10.1111/J.1467-9892.1986.TB00501.X