Complete solution to a conjecture on the Randic index of triangle-free graphs

被引:3
作者
Li, Xueliang [1 ]
Liu, Jianxi
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
Randic index; Conjecture; Triangle-free graph;
D O I
10.1016/j.disc.2009.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Randic index R(G) of a graph G is defined by R(G) = Sigma(uv)(d(u)d(v))(-1/2) where d(u) is the degree of a vertex u in G and the summation extends over all edges ut) of G. A conjecture about the Randic index says that for any triangle-free graph G of order n with minimum degree delta >= k >= 1. one has R(G) >= root k(n-k), where the equality holds if and only if G = K-k,K-n-k. In this short note we give a confirmative proof for the conjecture. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6322 / 6324
页数:3
相关论文
共 11 条
[1]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[2]   On the Randic index [J].
Delorme, C ;
Favaron, O ;
Rautenbach, D .
DISCRETE MATHEMATICS, 2002, 257 (01) :29-38
[3]  
Fajtlowicz S., 1998, Technical report
[4]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[5]  
Kier LB., 1976, Molecular connectivity in chemistry and drug research
[6]  
Kier LB., 1986, Molecular connectivity in structure-activity analysis
[7]  
Li X., 2006, MATH CHEM MONOGRAPHS, V31, P89
[8]  
Li X., 2008, Mathematical Chemistry Monographs, P9
[9]  
Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127
[10]   On the Randic index [J].
Liu, HQ ;
Lu, M ;
Tian, F .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (03) :345-354