Sweeping at the Martin Boundary of a Fine Domain

被引:2
作者
El Kadiri, Mohamed [1 ]
Fuglede, Bent [2 ]
机构
[1] Univ Mohammed 5, Fac Sci, Dept Math, BP 1014, Rabat, Morocco
[2] Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
关键词
Martin boundary; Riesz-Martin kernel; Finely superharmonic function; Finely harmonic function; Sweeping; Minimal thinness; Minimal-fine topology; INTEGRAL-REPRESENTATION; RIESZ-DECOMPOSITION;
D O I
10.1007/s11118-015-9518-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sweeping on a subset of the Riesz-Martin space of a fine domain in (na parts per thousand yen2), both with respect to the natural topology and the minimal-fine topology, and show that the two notions of sweeping are identical.
引用
收藏
页码:401 / 422
页数:22
相关论文
共 50 条
[31]   A Note on the Harnack Inequality Related with the Martin Boundary [J].
Ruan, H. -J. ;
Wang, X. -Y. .
MARKOV PROCESSES AND RELATED FIELDS, 2015, 21 (02) :283-292
[32]   Martin boundary and exit space on the Sierpinski gasket [J].
LAU KaSing ;
NGAI SzeMan .
ScienceChina(Mathematics), 2012, 55 (03) :475-494
[33]   Reflected random walks and unstable Martin boundary [J].
Ignatiouk-Robert, Irina ;
Kurkova, Irina ;
Raschel, Kilian .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01) :549-587
[34]   Invariant measure, ratio limits and martin boundary [J].
Zhao M. ;
Jin M. .
Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (4) :465-472
[35]   The Martin Boundary of the Young-Fibonacci Lattice [J].
Frederick M. Goodman ;
Sergei V. Kerov .
Journal of Algebraic Combinatorics, 2000, 11 :17-48
[36]   Martin boundary and exit space on the Sierpinski gasket [J].
Ka-Sing Lau ;
Sze-Man Ngai .
Science China Mathematics, 2012, 55 :475-494
[37]   MARTIN BOUNDARY OF A KILLED RANDOM WALK ON A QUADRANT [J].
Ignatiouk-Robert, Irina ;
Loree, Christophe .
ANNALS OF PROBABILITY, 2010, 38 (03) :1106-1142
[38]   Potential Analysis on Nonsmooth Domains-Martin Boundary and Boundary Harnack Principle [J].
Aikawa, Hiroaki .
COMPLEX ANALYSIS AND POTENTIAL THEORY, 2012, 55 :235-253
[39]   POST-CRITICALLY FINITE FRACTAL AND MARTIN BOUNDARY [J].
Ju, Hongbing ;
Lau, Ka-Sing ;
Wang, Xiang-Yang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) :103-118
[40]   Martin Boundary of Killed Random Walks on Isoradial Graphs [J].
Cédric Boutillier ;
Kilian Raschel .
Potential Analysis, 2022, 57 :201-226