Sweeping at the Martin Boundary of a Fine Domain

被引:2
作者
El Kadiri, Mohamed [1 ]
Fuglede, Bent [2 ]
机构
[1] Univ Mohammed 5, Fac Sci, Dept Math, BP 1014, Rabat, Morocco
[2] Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
关键词
Martin boundary; Riesz-Martin kernel; Finely superharmonic function; Finely harmonic function; Sweeping; Minimal thinness; Minimal-fine topology; INTEGRAL-REPRESENTATION; RIESZ-DECOMPOSITION;
D O I
10.1007/s11118-015-9518-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sweeping on a subset of the Riesz-Martin space of a fine domain in (na parts per thousand yen2), both with respect to the natural topology and the minimal-fine topology, and show that the two notions of sweeping are identical.
引用
收藏
页码:401 / 422
页数:22
相关论文
共 50 条
[21]   Martin boundary associated with a system of PDE [J].
Benyaiche, Allami ;
Ghiate, Salma .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (03) :399-425
[22]   THE MAX-PLUS MARTIN BOUNDARY [J].
Akian, Marianne ;
Gaubert, Stephane ;
Walsh, Cormac .
DOCUMENTA MATHEMATICA, 2009, 14 :195-240
[23]   Boundary Harnack Principle and Martin Boundary at Infinity for Subordinate Brownian Motions [J].
Panki Kim ;
Renming Song ;
Zoran Vondraček .
Potential Analysis, 2014, 41 :407-441
[24]   Boundary Harnack Principle and Martin Boundary at Infinity for Subordinate Brownian Motions [J].
Kim, Panki ;
Song, Renming ;
Vondracek, Zoran .
POTENTIAL ANALYSIS, 2014, 41 (02) :407-441
[25]   INVARIANT MEASURE,RATIO LIMITS AND MARTIN BOUNDARY [J].
Zhao Minzhi Jin MengweiDept of Math Zhejiang Univ Hangzhou China .
Applied Mathematics:A Journal of Chinese Universities, 2002, (04) :465-472
[26]   THE MARTIN BOUNDARY OF A FREE PRODUCT OF ABELIAN GROUPS [J].
Dussaule, Matthieu .
ANNALES DE L INSTITUT FOURIER, 2020, 70 (01) :313-373
[27]   THE MARTIN BOUNDARY IN NON-LIPSCHITZ DOMAINS [J].
BASS, RF ;
BURDZY, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :361-378
[28]   Martin boundary and exit space on the Sierpinski gasket [J].
Lau Ka-Sing ;
Ngai Sze-Man .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (03) :475-494
[29]   Accessibility, Martin boundary and minimal thinness for Feller processes in metric measure spaces [J].
Kim, Panki ;
Song, Renming ;
Vondracek, Zoran .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (02) :541-592
[30]   The Martin boundary of the Young-Fibonacci lattice [J].
Goodman, FM ;
Kerov, SV .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 11 (01) :17-48