On lower and upper bounds of matrices

被引:0
作者
Gao, Peng [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Lower and upper bounds of matrices; MONOTONE-FUNCTIONS; INEQUALITIES;
D O I
10.1016/j.jmaa.2009.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using an approach of Bergh, we give an alternate proof of Bennett's result on lower bounds for non-negative matrices acting on non-increasing non-negative sequences in l(p) when p >= 1 and its dual version, the upper bounds when 0 < p <= 1. We also determine such bounds explicitly for some families of matrices. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 122
页数:15
相关论文
共 23 条
[1]  
Alzer H, 2001, MATH NACHR, V222, P5, DOI 10.1002/1522-2616(200102)222:1<5::AID-MANA5>3.3.CO
[2]  
2-H
[3]  
[Anonymous], 1993, Proc. Steklov Inst. Math
[4]  
Barza S, 2000, MATH NACHR, V210, P43, DOI 10.1002/(SICI)1522-2616(200002)210:1<43::AID-MANA43>3.3.CO
[5]  
2-5
[6]   SOME ELEMENTARY INEQUALITIES .2. [J].
BENNETT, G .
QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (156) :385-400
[7]   Monotonic averages of convex functions [J].
Bennett, G ;
Jameson, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :410-430
[8]   LOWER BOUNDS FOR MATRICES [J].
BENNETT, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 82 :81-98
[9]   LOWER BOUNDS FOR MATRICES .2. [J].
BENNETT, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (01) :54-74
[10]   Weighted Hardy inequalities for decreasing sequences and functions [J].
Bennett, G ;
Grosse-Erdmann, KG .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :489-531