On the sliding-mode control of fractional-order nonlinear uncertain dynamics

被引:61
作者
Jakovljevic, B. [2 ]
Pisano, A. [1 ]
Rapaic, M. R. [2 ]
Usai, E. [1 ]
机构
[1] Univ Cagliari, Dept Elect & Elect Engn, Cagliari, Italy
[2] Univ Novi Sad, Fac Tech Sci, Comp & Control Dept, Novi Sad, Serbia
关键词
fractional-order systems; sliding-mode control; multivariable systems; CONTINUOUS-TIME; SYSTEMS;
D O I
10.1002/rnc.3337
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with applications of sliding-mode-based fractional control techniques to address tracking and stabilization control tasks for some classes of nonlinear uncertain fractional-order systems. Both single-input and multi-input systems are considered. A second-order sliding-mode approach is taken, in suitable combination with PI-based design, in the single-input case, while the unit-vector approach is the main tool of reference in the multi-input case. Sliding manifolds containing fractional derivatives of the state variables are used in the present work. Constructive tuning conditions for the control parameters are derived by Lyapunov analysis, and the convergence properties of the proposed schemes are supported by simulation results. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:782 / 798
页数:17
相关论文
共 34 条
  • [1] Alessandro P., 2021, IFAC PAPERSONLINE, V45, P637, DOI [10.3182/20120328-3-IT-3014.00108, DOI 10.3182/20120328-3-IT-3014.00108]
  • [2] [Anonymous], 2008, 3 IFAC WORKSH FRACT, DOI DOI 10.1016/j.cnsns.2009.05.070
  • [3] [Anonymous], 2006, THEORY APPL FRACTION
  • [4] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [5] A diffusion wave equation with two fractional derivatives of different order
    Atanackovic, T. M.
    Pilipovic, S.
    Zorica, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) : 5319 - 5333
  • [6] On a distributed derivative model of a viscoelastic body
    Atanackovic, TM
    [J]. COMPTES RENDUS MECANIQUE, 2003, 331 (10): : 687 - 692
  • [7] UNIT SLIDING MODE CONTROL IN CONTINUOUS-TIME AND DISCRETE-TIME-SYSTEMS
    BAIDA, SV
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1993, 57 (05) : 1125 - 1132
  • [8] Calderon AJ, 2006, 7 PORT C AUT CONTR C
  • [9] Caponetto R., 2010, Modeling and control applications
  • [10] Das S., 2008, Functional Fractional Calculus for System Identification and Controls