Ultraflat Sub-10 Nanometer Gap Electrodes for Two-Dimensional Optoelectronic Devices

被引:20
作者
Namgung, Seon [1 ,2 ]
Koester, Steven J. [1 ]
Oh, Sang-Hyun [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Phys, Ulsan 44919, South Korea
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
two-dimensional materials; field-effect transistor; atomic layer lithography; atomic layer deposition; photodetector; template stripping; DOUBLE-GATE; TRANSISTORS; GRAPHENE; LENGTH; SOI;
D O I
10.1021/acsnano.0c10759
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) materials are promising candidates for building ultrashort-channel devices because their thickness can be reduced down to a single atomic layer. Here, we demonstrate an ultraflat nanogap platform based on atomic layer deposition (ALD) and utilize the structure to fabricate 2D material-based optical and electronic devices. In our method, ultraflat metal surfaces, template-stripped from a Si wafer mold, are separated by an Al2O3 ALD layer down to a gap width of 10 nm. Surfaces of both electrodes are vertically aligned without a height difference, and each electrode is ultraflat with a measured root-mean-square roughness as low as 0.315 nm, smaller than the thickness of monolayer graphene. Simply by placing 2D material flakes on top of the platform, short-channel field-effect transistors based on black phosphorus and MoS2 are fabricated, exhibiting their typical transistor characteristics. Furthermore, we use the same platform to demonstrate photodetectors with a nanoscale photosensitive channel, exhibiting higher photosensitivity compared to microscale gap channels. Our wafer-scale atomic layer lithography method can benefit a diverse range of 2D optical and electronic applications.
引用
收藏
页码:5276 / 5283
页数:8
相关论文
共 49 条
[1]   CMOS Scaling Trends and Beyond [J].
Bohr, Mark T. ;
Young, Ian A. .
IEEE MICRO, 2017, 37 (06) :20-29
[2]   High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy [J].
Cai, Hongbing ;
Meng, Qushi ;
Zhao, Hui ;
Li, Mingling ;
Dai, Yanmeng ;
Lin, Yue ;
Ding, Huaiyi ;
Pan, Nan ;
Tian, Yangchao ;
Luo, Yi ;
Wang, Xiaoping .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :20189-20195
[3]   An Ultra-Short Channel Monolayer MoS2 FET Defined By the Curvature of a Thin Nanowire [J].
Cao, Wei ;
Liu, Wei ;
Kang, Jiahao ;
Banerjee, Kaustav .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (11) :1497-1500
[4]   Nanogap-Enhanced Infrared Spectroscopy with Template-Stripped Wafer-Scale Arrays of Buried Plasmonic Cavities [J].
Chen, Xiaoshu ;
Ciraci, Cristian ;
Smith, David R. ;
Oh, Sang-Hyun .
NANO LETTERS, 2015, 15 (01) :107-113
[5]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[6]   MoS2 transistors with 1-nanometer gate lengths [J].
Desai, Sujay B. ;
Madhvapathy, Surabhi R. ;
Sachid, Angada B. ;
Llinas, Juan Pablo ;
Wang, Qingxiao ;
Ahn, Geun Ho ;
Pitner, Gregory ;
Kim, Moon J. ;
Bokor, Jeffrey ;
Hu, Chenming ;
Wong, H. -S. Philip ;
Javey, Ali .
SCIENCE, 2016, 354 (6308) :99-102
[7]   Short channel effects in graphene-based field effect transistors targeting radio-frequency applications [J].
Feijoo, Pedro C. ;
Jimenez, David ;
Cartoixa, Xavier .
2D MATERIALS, 2016, 3 (02)
[8]   Generalized scale length for two-dimensional effects in MOSFET's [J].
Frank, DJ ;
Taur, Y ;
Wong, HSP .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (10) :385-387
[9]   Scalable high performance radio frequency electronics based on large domain bilayer MoS2 [J].
Gao, Qingguo ;
Zhang, Zhenfeng ;
Xu, Xiaole ;
Song, Jian ;
Li, Xuefei ;
Wu, Yanqing .
NATURE COMMUNICATIONS, 2018, 9
[10]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131