Role of hypoxia-inducible factor-1α in angiogenic-osteogenic coupling

被引:148
作者
Riddle, Ryan C. [1 ]
Khatri, Richa [3 ,4 ]
Schipani, Ernestina [3 ,4 ]
Clemens, Thomas L. [1 ,2 ]
机构
[1] Univ Alabama Birmingham, Dept Pathol, Birmingham, AL 35294 USA
[2] Vet Adm Med Ctr, Birmingham, AL USA
[3] Massachusetts Gen Hosp, Endocrine Unit, Boston, MA 02114 USA
[4] Harvard Univ, Sch Med, Boston, MA USA
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2009年 / 87卷 / 06期
关键词
Hypoxia-inducible factor; VEGF; Endochondral bone formation; Fracture repair; ENDOTHELIAL GROWTH-FACTOR; COLONY-STIMULATING FACTOR; MESENCHYMAL STEM-CELLS; BONE-FORMATION; FACTOR VEGF; DISTRACTION OSTEOGENESIS; VASCULAR CONTRIBUTION; MOLECULAR-MECHANISMS; CELLULAR ADAPTATION; PARACRINE ROLE;
D O I
10.1007/s00109-009-0477-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration. The vasculature supplies oxygen to developing and regenerating bone and also delivers critical signals to the stroma that stimulate mesenchymal cell specification to promote bone formation. Recent studies suggest that the hypoxia-inducible factors (HIFs) are required for the initiation of the angiogenic-osteogenic cascade. Genetic manipulation of individual components of the HIF/vascular endothelial growth factor (VEGF) pathway in mice has provided clues to how coupling is achieved. In this article, we review the current understanding of the cellular and molecular mechanisms responsible for angiogenic-osteogenic coupling. We also briefly discuss the therapeutic manipulation of HIF and VEGF in skeletal repair. Such discoveries suggest promising approaches for the development of novel therapies to improve bone accretion and repair.
引用
收藏
页码:583 / 590
页数:8
相关论文
共 87 条
[11]   Inhibition of β-catenin signaling causes defects in postnatal cartilage development [J].
Chen, Mo ;
Zhu, Mei ;
Awad, Hani ;
Li, Tian-Fang ;
Sheu, Tzong-Jen ;
Boyce, Brendan F. ;
Chen, Di ;
O'Keefe, Regis J. .
JOURNAL OF CELL SCIENCE, 2008, 121 (09) :1455-1465
[12]   Vascular proliferation and blood supply during distraction osteogenesis: A scanning electron microscopic observation [J].
Choi, IH ;
Ahn, JH ;
Chung, CY ;
Cho, TJ .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2000, 18 (05) :698-705
[13]   Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development [J].
Colnot, C ;
Lu, CY ;
Hu, D ;
Helms, JA .
DEVELOPMENTAL BIOLOGY, 2004, 269 (01) :55-69
[14]   A molecular analysis of matrix remodeling and angiogenesis during long bone development [J].
Colnot, CI ;
Helms, JA .
MECHANISMS OF DEVELOPMENT, 2001, 100 (02) :245-250
[15]   EFFECTS OF REDUCED BLOOD SUPPLY ON BONE [J].
COOLBAUGH, CC .
AMERICAN JOURNAL OF PHYSIOLOGY, 1952, 169 (01) :26-33
[16]  
COZEN L, 1972, CLIN ORTHOP RELAT R, P134
[17]  
Danis A, 2001, Bull Mem Acad R Med Belg, V156, P107
[18]   Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A [J].
Deckers, MML ;
van Bezooijen, RL ;
van der Horst, G ;
Hoogendam, J ;
van der Bent, C ;
Papapoulos, SE ;
Löwik, CWGM .
ENDOCRINOLOGY, 2002, 143 (04) :1545-1553
[19]   Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation [J].
Deckers, MML ;
Karperien, M ;
van der Bent, C ;
Yamashita, T ;
Papapoulos, SE ;
Löwik, CWGM .
ENDOCRINOLOGY, 2000, 141 (05) :1667-1674
[20]   Remodeling and vascular spaces in bone [J].
Eriksen, Erik Fink ;
Eghbali-Fatourechi, Guiti Z. ;
Khosla, Sundeep .
JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 (01) :1-6