Canonical complex structures associated to connections and complexifications of Lie groups

被引:14
作者
Szoke, R
机构
[1] 1117 Budapest
关键词
D O I
10.1007/s00208-004-0525-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of adapted complex structure is extended from Riemannian manifolds to general Koszul connections. The case of the canonical connection of a Lie group and the Levi-Civita connection of a pseudo-Riemannian manifold is studied.
引用
收藏
页码:553 / 591
页数:39
相关论文
共 42 条
[1]   The isometry group of a compact Lorentz manifold .1. [J].
Adams, S ;
Stuck, G .
INVENTIONES MATHEMATICAE, 1997, 129 (02) :239-261
[2]   Symplectic reduction and the homogeneous complex Monge-Ampere equation [J].
Aguilar, RM .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 19 (04) :327-353
[3]  
[Anonymous], 1980, ANN SCUOLA NORM-SCI
[4]  
BECKER J, 1972, MATH ANN, V195, P103
[5]  
Bourbaki N., 1971, GROUPES ALGEBRES LIE
[6]  
BURNS D, 1982, ANN MATH, V115, P348
[7]  
BURNS D, 1995, LECT NOTES PURE APPL, V173, P119
[8]  
Cartan E, 1926, P K AKAD WET-AMSTERD, V29, P803
[9]  
CASADIO TE, 2000, MATH Z, V233, P535
[10]   Singular Monge-Ampere foliations [J].
Duchamp, T ;
Kalka, M .
MATHEMATISCHE ANNALEN, 2003, 325 (01) :187-209