Localized modes in quasi-two-dimensional Bose-Einstein condensates with spin-orbit and Rabi couplings

被引:90
作者
Salasnich, Luca [1 ,2 ,3 ]
Cardoso, Wesley B. [4 ]
Malomed, Boris A. [5 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy
[2] Univ Padua, CNISM, I-35131 Padua, Italy
[3] CNR, INO, Sez Sesto Fiorentino, I-50019 Sesto Fiorentino, Italy
[4] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[5] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 03期
关键词
ANDERSON LOCALIZATION; DARK SOLITONS; DYNAMICS; GAS;
D O I
10.1103/PhysRevA.90.033629
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a two-component pancake-shaped, i.e., effectively two-dimensional (2D), Bose-Einstein condensate coupled by the spin-orbit (SO) and Rabi terms. The SO coupling adopted here is of the mixed Rashba-Dresselhaus type. For this configuration, we derive a system of two 2D nonpolynomial Schrodinger equations (NPSEs), for both attractive and repulsive interatomic interactions. In the low- and high-density limits, the system amounts to previously known models, namely, the usual 2D Gross-Pitaevskii equation, or the Schrodinger equation with the nonlinearity of power 7/3. We present simple approximate localized solutions, obtained by treating the SO and Rabi terms as perturbations. Localized solutions of the full NPSE system are obtained in a numerical form. Remarkably, in the case of the attractive nonlinearity acting in free space (i.e., without any 2D trapping potential), we find parameter regions where the SO and Rabi couplings make 2D fundamental solitons dynamically stable.
引用
收藏
页数:8
相关论文
共 59 条
[41]   Anderson localization of a non-interacting Bose-Einstein condensate [J].
Roati, Giacomo ;
D'Errico, Chiara ;
Fallani, Leonardo ;
Fattori, Marco ;
Fort, Chiara ;
Zaccanti, Matteo ;
Modugno, Giovanni ;
Modugno, Michele ;
Inguscio, Massimo .
NATURE, 2008, 453 (7197) :895-U36
[42]   Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap [J].
Ryu, C. ;
Andersen, M. F. ;
Clade, P. ;
Natarajan, Vasant ;
Helmerson, K. ;
Phillips, W. D. .
PHYSICAL REVIEW LETTERS, 2007, 99 (26)
[43]   Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space [J].
Sakaguchi, Hidetsugu ;
Li, Ben ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2014, 89 (03)
[44]   Vortex lattice solutions to the Gross-Pitaevskii equation with spin-orbit coupling in optical lattices [J].
Sakaguchi, Hidetsugu ;
Li, Ben .
PHYSICAL REVIEW A, 2013, 87 (01)
[45]  
Salasnich L, 2002, LASER PHYS, V12, P198
[46]   Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates [J].
Salasnich, L ;
Parola, A ;
Reatto, L .
PHYSICAL REVIEW A, 2002, 65 (04) :6
[47]   Localized modes in dense repulsive and attractive Bose-Einstein condensates with spin-orbit and Rabi couplings [J].
Salasnich, Luca ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2013, 87 (06)
[48]   Solitons and solitary vortices in pancake-shaped Bose-Einstein condensates [J].
Salasnich, Luca ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2009, 79 (05)
[49]   Three-vortex configurations in trapped Bose-Einstein condensates [J].
Seman, J. A. ;
Henn, E. A. L. ;
Haque, M. ;
Shiozaki, R. F. ;
Ramos, E. R. F. ;
Caracanhas, M. ;
Castilho, P. ;
Castelo Branco, C. ;
Tavares, P. E. S. ;
Poveda-Cuevas, F. J. ;
Roati, G. ;
Magalhaes, K. M. F. ;
Bagnato, V. S. .
PHYSICAL REVIEW A, 2010, 82 (03)
[50]   Trapped Two-Dimensional Condensates with Synthetic Spin-Orbit Coupling [J].
Sinha, Subhasis ;
Nath, Rejish ;
Santos, Luis .
PHYSICAL REVIEW LETTERS, 2011, 107 (27)