All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose

被引:154
作者
Soykeabkaew, Nattakan [1 ]
Sian, Chandeep [1 ]
Gea, Saharman [1 ]
Nishino, Takashi [2 ]
Peijs, Ton [1 ,3 ]
机构
[1] Univ London, Sch Engn & Mat Sci, Ctr Mat Res, London E1 4NS, England
[2] Kobe Univ, Dept Chem Sci & Engn, Fac Engn, Kobe, Hyogo 6578501, Japan
[3] Eindhoven Univ Technol, Eindhoven Polymer Labs, NL-5600 MB Eindhoven, Netherlands
关键词
Bacterial cellulose; Bionanocomposites; Mechanical properties; Scanning electron microscopy; X-ray diffraction; FIBER VOLUME FRACTION; MECHANICAL-PROPERTIES; FLAX FIBERS; PLASTICIZED STARCH; ELASTIC-MODULUS; COMPOSITES; POLYPROPYLENE; ACETATE; MERCERIZATION; WHISKERS;
D O I
10.1007/s10570-009-9285-1
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
All-cellulose nanocomposites using bacterial cellulose (BC) as a single raw material were prepared by a surface selective dissolution method. The effect of the immersion time of BC in the solvent (lithium chloride/N,N-dimethylacetamide) during preparation on the nanocomposite properties was investigated. The structure, morphology and mechanical properties of the nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and tensile testing. The optimum immersion time of 10 min allowed the preparation of nanocomposites with an average tensile strength of 411 MPa and Young's modulus of 18 GPa. With the longest immersion time of 60 min, the prepared composite sheet turns to express a very high toughness characteristic possessing a work-to-fracture as high as 16 MJ/m(3). These biobased nanocomposites show high performances thanks to their unique structure and properties.
引用
收藏
页码:435 / 444
页数:10
相关论文
共 56 条
[1]   The mechanical properties of woven tape all-polypropylene composites [J].
Alcock, B. ;
Cabrera, N. O. ;
Barkoula, N. -M. ;
Spoelstra, A. B. ;
Loos, J. ;
Peijs, T. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (01) :147-161
[2]   The mechanical properties of unidirectional all-polypropylene composites [J].
Alcock, B ;
Cabrera, NO ;
Barkoula, NM ;
Loos, J ;
Peijs, T .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (05) :716-726
[3]   Biocomposites based on plasticized starch: thermal and mechanical behaviours [J].
Averous, L ;
Boquillon, N .
CARBOHYDRATE POLYMERS, 2004, 56 (02) :111-122
[4]   Thermal characterization of bacterial cellulose-phosphate composite membranes [J].
Barud, H. S. ;
Ribeiro, C. A. ;
Crespi, Marisa S. ;
Martines, M. A. U. ;
Dexpert-Ghys, J. ;
Marques, R. F. C. ;
Messaddeq, Y. ;
Ribeiro, S. J. L. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 87 (03) :815-818
[5]  
Bielecki S., 2004, POLYSACCHARIDES, V1, P37
[6]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[7]   Processing of all-polypropylene composites for ultimate recyclability [J].
Cabrera, N ;
Alcock, B ;
Loos, J ;
Peijs, T .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2004, 218 (L2) :145-155
[8]   Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites [J].
de Rodriguez, Nancy Lis Garcia ;
Thielemans, Wim ;
Dufresne, Alain .
CELLULOSE, 2006, 13 (03) :261-270
[9]   Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions [J].
Dupont, AL .
POLYMER, 2003, 44 (15) :4117-4126
[10]   Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene [J].
Garkhail, SK ;
Heijenrath, RWH ;
Peijs, T .
APPLIED COMPOSITE MATERIALS, 2000, 7 (5-6) :351-372