Cylindrical fractional Brownian motion in Banach spaces

被引:5
作者
Issoglio, E. [1 ]
Riedle, M. [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Cylindrical fractional Brownian motion; Stochastic integration in Banach spaces; Stochastic partial differential equations; Fractional Ornstein-Uhlenbeck process; gamma-radonifying; Cylindrical measures; STOCHASTIC INTEGRATION; EVOLUTION-EQUATIONS; HILBERT-SPACE; CALCULUS; NOISES;
D O I
10.1016/j.spa.2014.05.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we introduce cylindrical fractional Brownian motions in Banach spaces and develop the related stochastic integration theory. Here a cylindrical fractional Brownian motion is understood in the classical framework of cylindrical random variables and cylindrical measures. The developed stochastic integral for deterministic operator valued integrands is based on a series representation of the cylindrical fractional Brownian motion, which is analogous to the Karhunen-Loeve expansion for genuine stochastic processes. In the last part we apply our results to study the abstract stochastic Cauchy problem in a Banach space driven by cylindrical fractional Brownian motion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:3507 / 3534
页数:28
相关论文
共 37 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
[Anonymous], 2000, PUR AP M-WI
[3]   Cylindrical Levy processes in Banach spaces [J].
Applebaum, David ;
Riedle, Markus .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :697-726
[4]  
Badrikian, 1970, LECT NOTES MATH, V139
[5]   Lp-THEORY FOR THE STOCHASTIC HEAT EQUATION WITH INFINITE-DIMENSIONAL FRACTIONAL NOISE [J].
Balan, Raluca M. .
ESAIM-PROBABILITY AND STATISTICS, 2011, 15 :110-138
[6]  
Biagini F, 2008, PROBAB APPL SER, P1
[7]  
Brzeniak Z., 1997, STOCHASTICS STOCHAST, V61, P245
[8]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74
[9]   Stochastic evolution equations driven by Liouville fractional Brownian motion [J].
Brzezniak, Zdzislaw ;
van Neerven, Jan ;
Salopek, Donna .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (01) :1-27
[10]  
Da Prato G., 1992, STOCHASTIC EQUATIONS, DOI 10.1017/CBO9780511666223