The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations

被引:68
作者
Lorenz, Dirk A. [1 ]
Schoepfer, Frank [2 ]
Wenger, Stephan [3 ]
机构
[1] TU Braunschweig, Inst Anal & Algebra, D-38092 Braunschweig, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
[3] TU Braunschweig, Inst Comp Graph, D-38092 Braunschweig, Germany
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2014年 / 7卷 / 02期
关键词
linearized Bregman method; split feasibility problems; Bregman projections; sparse solutions; ITERATIVE ALGORITHMS; EXACT REGULARIZATION; PROJECTION; RECONSTRUCTION; CONVERGENCE; SETS;
D O I
10.1137/130936269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The linearized Bregman method is a method to calculate sparse solutions to systems of linear equations. We formulate this problem as a split feasibility problem, propose an algorithmic framework based on Bregman projections, and prove a general convergence result for this framework. Convergence of the linearized Bregman method will be obtained as a special case. Our approach also allows for several generalizations such as other objective functions, incremental iterations, incorporation of non-Gaussian noise models, and box constraints.
引用
收藏
页码:1237 / 1262
页数:26
相关论文
共 40 条
[1]   Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces [J].
Alber, Y ;
Butnariu, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (01) :33-61
[2]  
[Anonymous], 1951, American journal of mathematics, DOI DOI 10.2307/2372313
[3]  
Bauschke HeinzH., 1997, J. Convex Anal., V4, P27
[4]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[5]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[6]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[7]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[9]   Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization [J].
Byrne, C ;
Censor, Y .
ANNALS OF OPERATIONS RESEARCH, 2001, 105 (1-4) :77-98
[10]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120