CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae

被引:130
作者
Jakociunas, Tadas [1 ]
Rajkumar, Arun S. [1 ]
Zhang, Jie [1 ]
Arsovska, Dushica [1 ]
Rodriguez, Angelica [1 ]
Jendresen, Christian Bille [1 ]
Skjodt, Mette L. [1 ]
Nielsen, Alex T. [1 ]
Borodina, Irina [1 ]
Jensen, Michael K. [1 ]
Keasling, Jay D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2800 Lyngby, Denmark
[2] Joint BioEnergy Inst, Emeryville, CA 94608 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
关键词
DNA assembly; CRISPR/Cas9; double-strand break; metabolic engineering; CHROMOSOMAL INTEGRATION; YEAST TRANSFORMATION; CHORISMATE MUTASE; ESCHERICHIA-COLI; GENE; CLONING; REPAIR; CONSTRUCTION; MUTAGENESIS; SELECTION;
D O I
10.1021/acssynbio.5b00007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Homologous recombination (HR) in Saccharomyces cerevisiae has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in S. cerevisiae.
引用
收藏
页码:1226 / 1234
页数:9
相关论文
共 43 条
[1]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[2]  
[Anonymous], 2010, LYS GO PCR REAG PROD
[3]   MOLECULAR-CLONING AND CHARACTERIZATION OF ARO7-OSM2, A SINGLE YEAST GENE NECESSARY FOR CHORISMATE MUTASE ACTIVITY AND GROWTH IN HYPERTONIC MEDIUM [J].
BALL, SG ;
WICKNER, RB ;
COTTAREL, G ;
SCHAUS, M ;
TIRTIAUX, C .
MOLECULAR & GENERAL GENETICS, 1986, 205 (02) :326-330
[4]  
Bao Z., 2014, ACS SYNTH BIOL, DOI [10.1021/sb500255k, DOI 10.1021/SB500255K]
[5]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[6]  
BROWN JF, 1990, MOL GEN GENET, V220, P283
[7]   A CRISPR Approach to Gene Targeting [J].
Carroll, Dana .
MOLECULAR THERAPY, 2012, 20 (09) :1658-1660
[8]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[9]   Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae [J].
Eckert-Boulet, Nadine ;
Pedersen, Mette Louise ;
Krogh, Berit Olsen ;
Lisby, Michael .
YEAST, 2012, 29 (08) :323-334
[10]   Self- processing of ribozyme- flanked RNAs into guide RNAs in vitro and in vivo for CRISPR- mediated genome editing [J].
Gao, Yangbin ;
Zhao, Yunde .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (04) :343-349