histolab: A Python']Python library for reproducible Digital Pathology preprocessing with automated testing

被引:17
作者
Marcolini, Alessia [1 ]
Bussola, Nicole [2 ,3 ]
Arbitrio, Ernesto [5 ]
Amgad, Mohamed [6 ]
Jurman, Giuseppe [4 ]
Furlanello, Cesare [1 ,3 ]
机构
[1] HK3 Lab, Piazza Manifatture 1, I-38068 Rovereto, Italy
[2] Univ Trento, CIBIO, Via Sommar 9, I-38123 Povo, Italy
[3] Orobix Life, Via G Camozzi 144, I-24121 Bergamo, Italy
[4] Fdn Bruno Kessler, Via Sommar 18, I-38123 Povo, Italy
[5] YouGov PLC, 50 Featherstone St, London EC1Y 8R, England
[6] Northwestern Univ, 750 N Lake Shore Dr, Chicago, IL 60611 USA
关键词
Digital Pathology; Continuous integration; Data preprocessing; Deep Learning; Reproducibility;
D O I
10.1016/j.softx.2022.101237
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep Learning (DL) is rapidly permeating the field of Digital Pathology with algorithms successfully applied to ease daily clinical practice and to discover novel associations. However, most DL workflows for Digital Pathology include custom code for data preprocessing, usually tailored to data and tasks of interest, resulting in software that is error-prone and hard to understand, peer-review, and test. In this work, we introduce histolab, a Python package designed to standardize the preprocessing of Whole Slide Images in a reproducible environment, supported by automated testing. In addition, the package provides functions for building datasets of WSI tiles, including augmentation and morpho-logical operators, a tile scoring framework, and stain normalization methods. histolab is modular, extensible, and easily integrable into DL pipelines, with support of the OpenSlide and large_image backends. To guarantee robustness, histolab embraces software engineering best practices such as multiplatform automated testing and Continuous Integration.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 57 条
[21]   Validation of a digital pathology system including remote review during the COVID-19 pandemic [J].
Hanna, Matthew G. ;
Reuter, Victor E. ;
Ardon, Orly ;
Kim, David ;
Sirintrapun, Sahussapont Joseph ;
Schuffler, Peter J. ;
Busam, Klaus J. ;
Sauter, Jennifer L. ;
Brogi, Edi ;
Tan, Lee K. ;
Xu, Bin ;
Bale, Tejus ;
Agaram, Narasimhan P. ;
Tang, Laura H. ;
Ellenson, Lora H. ;
Philip, John ;
Corsale, Lorraine ;
Stamelos, Evangelos ;
Friedlander, Maria A. ;
Ntiamoah, Peter ;
Labasin, Marc ;
England, Christine ;
Klimstra, David S. ;
Hameed, Meera .
MODERN PATHOLOGY, 2020, 33 (11) :2115-2127
[22]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[23]   Computational Nuclei Segmentation Methods in Digital Pathology: A Survey [J].
Hayakawa, Tomohiro ;
Prasath, V. B. Surya ;
Kawanaka, Hiroharu ;
Aronow, Bruce J. ;
Tsuruoka, Shinji .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (01) :1-13
[24]   Machine Learning and Knowledge Extraction in Digital Pathology Needs an Integrative Approach [J].
Holzinger, Andreas ;
Malle, Bernd ;
Kieseberg, Peter ;
Roth, Peter M. ;
Mueller, Heimo ;
Reihs, Robert ;
Zatloukal, Kurt .
TOWARDS INTEGRATIVE MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2017, 10344 :13-50
[25]   Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential [J].
Irshad, Humayun ;
Veillard, Antoine ;
Roux, Ludovic ;
Racoceanu, Daniel .
IEEE Reviews in Biomedical Engineering, 2014, 7 :97-114
[26]  
Jaume G, 2021, Arxiv, DOI arXiv:2107.10073
[27]   Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images-Role of Multiscale Decision Aggregation and Data Augmentation [J].
Karimi, Davood ;
Nir, Guy ;
Fazli, Ladan ;
Black, Peter C. ;
Goldenberg, Larry ;
Salcudean, Septimiu E. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (05) :1413-1426
[28]   Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study [J].
Kather, Jakob Nikolas ;
Krisam, Johannes ;
Charoentong, Pornpimol ;
Luedde, Tom ;
Herpel, Esther ;
Weis, Cleo-Aron ;
Gaiser, Timo ;
Marx, Alexander ;
Valous, Nektarios A. ;
Ferber, Dyke ;
Jansen, Lina ;
Reyes-Aldasoro, Constantino Carlos ;
Zoernig, Inka ;
Jaeger, Dirk ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Halama, Niels .
PLOS MEDICINE, 2019, 16 (01)
[29]   Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology [J].
Lancellotti, Cesare ;
Cancian, Pierandrea ;
Savevski, Victor ;
Kotha, Soumya Rupa Reddy ;
Fraggetta, Filippo ;
Graziano, Paolo ;
Di Tommaso, Luca .
CELLS, 2021, 10 (04)
[30]   Maximizing the diagnostic information from biopsies in chronic inflammatory bowel diseases: recommendations from the Erlangen International Consensus Conference on Inflammatory Bowel Diseases and presentation of the IBD-DCA score as a proposal for a new index for histologic activity assessment in ulcerative colitis and Crohn's disease [J].
Lang-Schwarz, Corinna ;
Agaimy, Abbas ;
Atreya, Raja ;
Becker, Christoph ;
Danese, Silvio ;
Flejou, Jean-Francois ;
Gassler, Nikolaus ;
Grabsch, Heike I. ;
Hartmann, Arndt ;
Kamaradova, Katerina ;
Kuhl, Anja A. ;
Lauwers, Gregory Y. ;
Lugli, Alessandro ;
Nagtegaal, Iris ;
Neurath, Markus F. ;
Oberhuber, Georg ;
Peyrin-Biroulet, Laurent ;
Rath, Timo ;
Riddell, Robert ;
Rubio, Carlos A. ;
Sheahan, Kieran ;
Tilg, Herbert ;
Villanacci, Vincenzo ;
Westerhoff, Maria ;
Vieth, Michael .
VIRCHOWS ARCHIV, 2021, 478 (03) :581-594