ELLIPTIC EQUATIONS WITH CRITICAL GROWTH AND A LARGE SET OF BOUNDARY SINGULARITIES

被引:14
作者
Ghoussoub, Nassif [1 ]
Robert, Frederic [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France
基金
加拿大自然科学与工程研究理事会;
关键词
CRITICAL SOBOLEV EXPONENT; INEQUALITIES; CURVATURE; CONSTANT; SYMMETRY; BEHAVIOR;
D O I
10.1090/S0002-9947-09-04655-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve variationally certain equations of stellar dynamics of the form - Sigma(i)partial derivative(ii)u(x) = vertical bar u vertical bar(p-2) u(x)/dist(x,A)(s) in a domain Omega of R(n), where A is a proper linear subspace of R(n). Existence problems are related to the question of attainability of the best constant in the following inequality due to Maz'ya (1985): 0 < mu(s,) (P)(Omega) = inf {integral(Omega)vertical bar del u vertical bar(2) dx vertical bar u is an element of H(1,0)(2)(Omega) and integral vertical bar u(x)vertical bar(2)*(s)/vertical bar pi(x)vertical bar(s) dx =1}, where 0 < s < 2, 2*(s) = 2(n-s)/n-2 and where pi is the orthogonal projection on a linear space P, where dim(R)P >= 2 (see also Badiale-Tarantello (2002)). We investigate this question and how it depends on tile relative position of the subspace P(perpendicular to), the orthogonal of P, with respect to the domain Omega, as well as on the curvature of the boundary partial derivative Omega at its points of intersection with P(perpendicular to).
引用
收藏
页码:4843 / 4870
页数:28
相关论文
共 22 条
[1]  
[Anonymous], 1985, Sobolev Spaces
[2]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[3]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[4]  
Brezis H., 1989, Progr. Nonlinear Differential Equations Appl., V1, P149
[5]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[6]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[7]   The best constants problem in Sobolev inequalities [J].
Druet, O .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :327-346
[8]   Elliptic equations with critical Sobolev exponents in dimension 3 [J].
Druet, O .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (02) :125-142
[9]  
DRUET O, 2005, IMRS INT MATH RES SU, P1
[10]   POSITIVE SOLUTIONS OF SEMILINEAR EQUATIONS IN CONES [J].
EGNELL, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) :191-201