Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2

被引:0
作者
Watson, Andrew J. [1 ]
Vallis, Geoffrey K. [2 ]
Nikurashin, Maxim [3 ,4 ]
机构
[1] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4QE, Devon, England
[2] Univ Exeter, Coll Engn Math & Phys, Exeter EX4 4QF, Devon, England
[3] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia
[4] ARC Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia
基金
美国国家科学基金会;
关键词
MERIDIONAL OVERTURNING CIRCULATION; ANTARCTIC SEA-ICE; CARBONIC-ACID; STRATIFICATION; DISSOCIATION; WESTERLIES; CONSTANTS; SEAWATER; CLOSURE; CYCLE;
D O I
10.1038/NGEO2538
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Atmospheric CO2 concentrations over glacial-interglacial cycles closely correspond to Antarctic temperature patterns(1). These are distinct from temperature variations in the mid to northern latitudes(2), so this suggests that the Southern Ocean is pivotal in controlling natural CO2 concentrations(3). Here we assess the sensitivity of atmospheric CO2 concentrations to glacial-interglacial changes in the ocean's meridional overturning circulation using a circulation model(4,5) for upwelling and eddy transport in the Southern Ocean coupled with a simple biogeochemical description. Under glacial conditions, a broader region of surface buoyancy loss results in upwelling farther to the north, relative to interglacials. The northern location of upwelling results in reduced CO2 outgassing and stronger carbon sequestration in the deep ocean: we calculate that the shift to this glacial-style circulation can draw down 30 to 60 ppm of atmospheric CO2. We therefore suggest that the direct effect of temperatures on Southern Ocean buoyancy forcing, and hence the residual overturning circulation, explains much of the strong correlation between Antarctic temperature variations and atmospheric CO2 concentrations over glacial-interglacial cycles.
引用
收藏
页码:861 / +
页数:5
相关论文
共 36 条
  • [1] The salinity, temperature, and δ18O of the glacial deep ocean
    Adkins, JF
    McIntyre, K
    Schrag, DP
    [J]. SCIENCE, 2002, 298 (5599) : 1769 - 1773
  • [2] ANDREWS DG, 1976, J ATMOS SCI, V33, P2031, DOI 10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO
  • [3] 2
  • [4] Sea Ice Ecosystems
    Arrigo, Kevin R.
    [J]. ANNUAL REVIEW OF MARINE SCIENCE, VOL 6, 2014, 6 : 439 - 467
  • [5] Impact of brine-induced stratification on the glacial carbon cycle
    Bouttes, N.
    Paillard, D.
    Roche, D. M.
    [J]. CLIMATE OF THE PAST, 2010, 6 (05) : 575 - 589
  • [6] Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean -: art. no. PA1017
    Curry, WB
    Oppo, DW
    [J]. PALEOCEANOGRAPHY, 2005, 20 (01): : 1 - 12
  • [7] A COMPARISON OF THE EQUILIBRIUM-CONSTANTS FOR THE DISSOCIATION OF CARBONIC-ACID IN SEAWATER MEDIA
    DICKSON, AG
    MILLERO, FJ
    [J]. DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1987, 34 (10): : 1733 - 1743
  • [8] Antarctic sea ice control on ocean circulation in present and glacial climates
    Ferrari, Raffaele
    Jansen, Malte F.
    Adkins, Jess F.
    Burke, Andrea
    Stewart, Andrew L.
    Thompson, Andrew F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (24) : 8753 - 8758
  • [9] A boundary-value problem for the parameterized mesoscale eddy transport
    Ferrari, Raffaele
    Griffies, Stephen M.
    Nurser, A. J. George
    Vallis, Geoffrey K.
    [J]. OCEAN MODELLING, 2010, 32 (3-4) : 143 - 156
  • [10] Preformed phosphate, soft tissue pump and atmospheric CO2
    Ito, T
    Follows, MJ
    [J]. JOURNAL OF MARINE RESEARCH, 2005, 63 (04) : 813 - 839