Unrestricted virtual braids and crystallographic braid groups

被引:1
作者
Bellingeri, Paolo [1 ]
Guaschi, John [1 ]
Makri, Stavroula [1 ]
机构
[1] Normandie Univ, LMNO, CNRS, UNICAEN, F-14000 Caen, France
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2022年 / 28卷 / 03期
关键词
Braid groups; Virtual and welded braid groups; Unrestricted virtual braid groups; FLAT MANIFOLDS;
D O I
10.1007/s40590-022-00454-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the crystallographic braid group B-n/[P-n, P-n] embeds naturally in the group of unrestricted virtual braids UVBn, we give new proofs of known results about the torsion elements of B-n/[P-n, P-n], and we characterise the torsion elements of UVBn.
引用
收藏
页数:16
相关论文
共 28 条
[1]   Extensions of Some Classical Local Moves on Knot Diagrams [J].
Audoux, Benjamin ;
Bellingeri, Paolo ;
Meilhan, Jean-Baptiste ;
Wagner, Emmanuel .
MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (03) :647-672
[2]  
Bardakov V.G., JGROUP THEORY
[3]   Unrestricted virtual braids, fused links and other quotients of virtual braid groups [J].
Bardakov, Valeriy G. ;
Bellingeri, Paolo ;
Damiani, Celeste .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (12)
[4]   The virtual and universal braids [J].
Bardakov, VG .
FUNDAMENTA MATHEMATICAE, 2004, 184 :1-18
[5]   Torsion subgroups of quasi-abelianized braid groups [J].
Beck, Vincent ;
Marin, Ivan .
JOURNAL OF ALGEBRA, 2020, 558 :3-23
[6]  
Bellingeri P., PREPRINT
[7]   A note on representations of welded braid groups [J].
Bellingeri, Paolo ;
Soulie, Arthur .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (12)
[8]  
Bellingeri P, 2020, ANN I FOURIER, V70, P1341
[9]   Configuration spaces of rings and wickets [J].
Brendle, Tara E. ;
Hatcher, Allen .
COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (01) :131-162
[10]   A journey through loop braid groups [J].
Damiani, Celeste .
EXPOSITIONES MATHEMATICAE, 2017, 35 (03) :252-285