Heteroclinic and homoclinic connections in a Kolmogorov-like flow

被引:12
作者
Suri, Balachandra [1 ]
Pallantla, Ravi Kumar [2 ]
Schatz, Michael F. [2 ]
Grigoriev, Roman O. [2 ]
机构
[1] IST Austria, A-3400 Klosterneuburg, Austria
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
EXACT COHERENT STRUCTURES; INVARIANT SOLUTIONS; TRAVELING-WAVES; PIPE-FLOW; TURBULENCE; TRANSITION; DYNAMICS; RECURRENCE; BOUNDARY; SYSTEMS;
D O I
10.1103/PhysRevE.100.013112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies suggest that unstable recurrent solutions of the Navier-Stokes equation provide new insights into dynamics of turbulent flows. In this study, we compute an extensive network of dynamical connections between such solutions in a weakly turbulent quasi-two-dimensional Kolmogorov flow that lies in the inversion-symmetric subspace. In particular, we find numerous isolated heteroclinic connections between different types of solutions-equilibria, periodic, and quasiperiodic orbits-as well as continua of connections forming higher-dimensional connecting manifolds. We also compute a homoclinic connection of a periodic orbit and provide strong evidence that the associated homoclinic tangle forms the chaotic repeller that underpins transient turbulence in the symmetric subspace.
引用
收藏
页数:14
相关论文
共 64 条
  • [41] ASYMPTOTIC STABILITY OF HETEROCLINIC CYCLES IN SYSTEMS WITH SYMMETRY
    KRUPA, M
    MELBOURNE, I
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 121 - 147
  • [42] Destabilizing turbulence in pipe flow
    Kuehnen, Jakob
    Song, Baofang
    Scarselli, Davide
    Budanur, Nazmi Burak
    Riedl, Michael
    Willis, Ashley P.
    Avila, Marc
    Hof, Bjoern
    [J]. NATURE PHYSICS, 2018, 14 (04) : 386 - +
  • [43] Turbulent spots in channel flow: An experimental study
    Lemoult, Gregoire
    Gumowski, Konrad
    Aider, Jean-Luc
    Wesfreid, Jose Eduardo
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2014, 37 (04)
  • [44] Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains
    Lucas, Dan
    Kerswell, Rich
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 750 : 518 - 554
  • [45] State space analysis of minimal channel flow
    Neelavara, Shreyas Acharya
    Duguet, Yohann
    Lusseyran, Francois
    [J]. FLUID DYNAMICS RESEARCH, 2017, 49 (03)
  • [46] Dynamics of spatially localized states in transitional plane Couette flow
    Pershin, Anton
    Beaume, Cedric
    Tobias, Steven M.
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 867 : 414 - 437
  • [47] Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow
    Pringle, Chris C. T.
    Kerswell, Rich R.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (07)
  • [48] Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos
    Pringle, Chris C. T.
    Willis, Ashley P.
    Kerswell, Rich R.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 702 : 415 - 443
  • [49] Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow
    Riols, A.
    Rincon, F.
    Cossu, C.
    Lesur, G.
    Longaretti, P. -Y.
    Ogilvie, G. I.
    Herault, J.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 731 : 1 - +
  • [50] SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058