Heteroclinic and homoclinic connections in a Kolmogorov-like flow

被引:12
作者
Suri, Balachandra [1 ]
Pallantla, Ravi Kumar [2 ]
Schatz, Michael F. [2 ]
Grigoriev, Roman O. [2 ]
机构
[1] IST Austria, A-3400 Klosterneuburg, Austria
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
EXACT COHERENT STRUCTURES; INVARIANT SOLUTIONS; TRAVELING-WAVES; PIPE-FLOW; TURBULENCE; TRANSITION; DYNAMICS; RECURRENCE; BOUNDARY; SYSTEMS;
D O I
10.1103/PhysRevE.100.013112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies suggest that unstable recurrent solutions of the Navier-Stokes equation provide new insights into dynamics of turbulent flows. In this study, we compute an extensive network of dynamical connections between such solutions in a weakly turbulent quasi-two-dimensional Kolmogorov flow that lies in the inversion-symmetric subspace. In particular, we find numerous isolated heteroclinic connections between different types of solutions-equilibria, periodic, and quasiperiodic orbits-as well as continua of connections forming higher-dimensional connecting manifolds. We also compute a homoclinic connection of a periodic orbit and provide strong evidence that the associated homoclinic tangle forms the chaotic repeller that underpins transient turbulence in the symmetric subspace.
引用
收藏
页数:14
相关论文
共 64 条
  • [1] [Anonymous], THESIS
  • [2] [Anonymous], THESIS
  • [3] The fractional-step method for the Navier-Stokes equations on staggered grids: The accuracy of three variations
    Armfield, S
    Street, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 153 (02) : 660 - 665
  • [4] Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow
    Avila, M.
    Mellibovsky, F.
    Roland, N.
    Hof, B.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (22)
  • [5] Bondarenko N. F., 1979, IZV AS ATMOS OCEAN P, V15, P711
  • [6] Transient turbulence in Taylor-Couette flow
    Borrero-Echeverry, Daniel
    Schatz, Michael F.
    Tagg, Randall
    [J]. PHYSICAL REVIEW E, 2010, 81 (02):
  • [7] Relative periodic orbits form the backbone of turbulent pipe flow
    Budanur, N. B.
    Short, K. Y.
    Farazmand, M.
    Willis, A. P.
    Cvitanovic, P.
    [J]. JOURNAL OF FLUID MECHANICS, 2017, 833 : 274 - 301
  • [8] Heteroclinic path to spatially localized chaos in pipe flow
    Budanur, N. B.
    Hof, B.
    [J]. JOURNAL OF FLUID MECHANICS, 2017, 827
  • [9] Budanur N. B., ARXIV181002211
  • [10] Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow
    Chandler, Gary J.
    Kerswell, Rich R.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 722 : 554 - 595