Blow-up analysis in degenerate parabolic systems coupled via norm-type reactions

被引:3
作者
Liu, Bingchen [1 ]
Zhang, Changcheng [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao City 266580, Shandong, Peoples R China
关键词
degenerate parabolic systems; critical blow-up exponents; uniform blow-up profile; 35K65; 35K61; 35B33; 35B40; GLOBAL EXISTENCE; DIFFUSION-EQUATIONS; BEHAVIOR;
D O I
10.1080/00036811.2015.1026810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a class of degenerate parabolic equations coupled via nonlinear reactions in L-p-norm type, subject to null Dirichlet boundary conditions. Firstly, we give the existence and uniqueness of local classical solutions and the comparison principle. Secondly, we determine the critical exponents for the blow-up solutions. Thirdly, all of the uniform blow-up profiles are obtained for simultaneous blow-up solutions.
引用
收藏
页码:668 / 689
页数:22
相关论文
共 18 条
[1]   LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
ANDERSON, JR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (01) :105-143
[2]  
Anderson JR, 1997, MATH METHOD APPL SCI, V20, P1069, DOI 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO
[3]  
2-Y
[4]   THERMAL-BEHAVIOR FOR A CONFINED REACTIVE GAS [J].
BEBERNES, J ;
BRESSAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (01) :118-133
[5]   THE INFLUENCE OF NONLOCAL NONLINEARITIES ON THE LONG-TIME BEHAVIOR OF SOLUTIONS OF BURGERS-EQUATION [J].
DENG, K ;
KWONG, MK ;
LEVINE, HA .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (01) :173-200
[6]   Blow-up and global existence for a nonlocal degenerate parabolic system [J].
Deng, WB ;
Li, YX ;
Xie, CH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :199-217
[7]   The blow-up rate for a degenerate parabolic equation with a non-local source [J].
Deng, WB ;
Duan, ZW ;
Xie, CH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :577-597
[8]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[9]   A general approach to critical Fujita exponents in nonlinear parabolic problems [J].
Galaktionov, VA ;
Levine, HA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (07) :1005-1027
[10]  
Li FC, 2003, DISCRETE CONT DYN-A, V9, P1519