Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model

被引:3
作者
Meng, Lili [1 ]
Han, Yutao [2 ]
Lu, Zhiyi [1 ]
Zhang, Guang [1 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Univ Int Business & Econ, Dept Econ, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
SYSTEM;
D O I
10.1155/2019/9592878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a discrete predator-prey system with the periodic boundary conditions will be considered. First, we get the conditions for producing Turing instability of the discrete predator-prey system according to the linear stability analysis. Then, we show that the discretemodel has the flip bifurcation and Turing bifurcation under the critical parameter values. Finally, a series of numerical simulations are carried out in the Turing instability region of the discrete predator-prey model; some new Turing patterns such as striped, bar, and horizontal bar are observed.
引用
收藏
页数:9
相关论文
共 17 条
[1]   A predator-prey model with predators using hawk and dove tactics [J].
Auger, P ;
de la Parra, RB ;
Morand, S ;
Sánchez, E .
MATHEMATICAL BIOSCIENCES, 2002, 177 :185-200
[2]   Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions [J].
Bai, Liang ;
Zhang, Guang .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) :321-333
[3]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[4]   Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect [J].
Cheng, Lifang ;
Cao, Hongjun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 38 :288-302
[5]  
Guckenheimer J., 2013, Nonlinear oscillations, dynamical systems and bifurcations of vector fields
[6]   Bifurcation and chaotic behavior of a discrete-time predator-prey system [J].
He, Zhimin ;
Lai, Xin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) :403-417
[7]   Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type [J].
Hu, Dongpo ;
Cao, Hongjun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :702-715
[8]   Evolutionary tradeoff and equilibrium in an aquatic predator-prey system [J].
Jones, LE ;
Ellner, SP .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (06) :1547-1573
[9]  
Jost C., 1998, THESIS
[10]   Global qualitative analysis of a ratio-dependent predator-prey system [J].
Kuang, Y ;
Beretta, E .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (04) :389-406