A Kalman filter method for estimation and prediction of space-time data with an autoregressive structure

被引:14
作者
Lagos-Alvarez, Bernardo [1 ]
Padilla, Leonardo [1 ]
Mateu, Jorge [2 ]
Ferreira, Guillermo [1 ]
机构
[1] Univ Concepcion, Dept Stat, Concepcion, Chile
[2] Univ Jaume 1, Dept Math, Castellon de La Plana, Spain
关键词
Kalman filter algorithm; Simple kriging; Space-time geostatistics; Space-time models; State-space system; LONG-MEMORY; MODELS; COVARIANCE;
D O I
10.1016/j.jspi.2019.03.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new Kalman filter algorithm to provide a formal statistical analysis of space-time data with an autoregressive structure. The Kalman filter technique allows to capture the temporal dependence as well as the spatial correlation structure through state-space equations, and it is aimed to perform statistical inference in terms of both parameter estimation and prediction at unobserved locations. We put in relevance the nugget effect at the observation equation. We test our procedure and compare it with classical kriging prediction via an intensive simulation study. We show that the Kalman filter is superior in both the estimation, without using a plug-in approach, and prediction for spatio-temporal data, providing a suitable formal procedure for the statistical analysis of space-time data. Finally, an application to the prediction of daily air temperature data in some regions of southern Chile is presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 51 条
  • [1] Using a spatio-temporal dynamic state-space model with the EM algorithm to patch gaps in daily riverflow series
    Amisigo, BA
    van de Giesen, NC
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2005, 9 (03) : 209 - 224
  • [2] Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
  • [3] 2
  • [4] Banerjee S., 2014, Hierarchical modeling and analysis for spatial data, DOI 10.1201/b17115
  • [5] Evaluating the Performance of Kalman-Filter-Based EEG Source Localization
    Barton, Matthew J.
    Robinson, Peter A.
    Kumar, Suresh
    Galka, Andreas
    Durrant-Whyte, Hugh F.
    Guivant, Jose
    Ozaki, Tohru
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (01) : 122 - 136
  • [6] ESTIMATION AND PREDICTION USING GENERALIZED WENDLAND COVARIANCE FUNCTIONS UNDER FIXED DOMAIN ASYMPTOTICS
    Bevilacqua, Moreno
    Faouzi, Tarik
    Furrer, Reinhard
    Porcu, Emilio
    [J]. ANNALS OF STATISTICS, 2019, 47 (02) : 828 - 856
  • [7] Brockwell P. J., 1991, Time Series: Theory and Methods
  • [8] Spatio-temporal modeling of particulate matter concentration through the SPDE approach
    Cameletti, Michela
    Lindgren, Finn
    Simpson, Daniel
    Rue, Havard
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) : 109 - 131
  • [9] Chan NH, 1998, ANN STAT, V26, P719
  • [10] Cressie N., 2014, SPACE TIME KALMAN FI