Master stability functions for coupled nearly identical dynamical systems

被引:132
作者
Sun, J. [1 ]
Bollt, E. M. [1 ]
Nishikawa, T. [1 ]
机构
[1] Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA
基金
美国国家科学基金会;
关键词
CHAOTIC SYSTEMS; SYNCHRONIZATION;
D O I
10.1209/0295-5075/85/60011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a master stability function (MSF) for synchronization in networks of coupled dynamical systems with small but arbitrary parametric variations. Analogous to the MSF for identical systems, our generalized MSF simultaneously solves the linear-stability problem for near-synchronous states (NSS) for all possible connectivity structures. We also derive a general sufficient condition for stable near-synchronization and show that the synchronization error scales linearly with the magnitude of parameter variations. Our analysis underlines the significant role played by the Laplacian eigenvectors in the study of network synchronization of near-identical systems. Copyright (C) EPLA, 2009
引用
收藏
页数:5
相关论文
共 22 条
[1]   BLENDING CHAOTIC ATTRACTORS USING THE SYNCHRONIZATION OF CHAOS [J].
ABARBANEL, HDI ;
RULKOV, NF ;
SUSHCHIK, MM .
PHYSICAL REVIEW E, 1995, 52 (01) :214-217
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]   Unifying framework for synchronization of coupled dynamical systems [J].
Boccaletti, S. ;
Pecora, L.M. ;
Pelaez, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II) :1-066219
[4]   Models of central pattern generators for quadruped locomotion - I. Primary gaits [J].
Buono, PL ;
Golubitsky, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (04) :291-326
[5]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[6]   Paths to synchronization on complex networks [J].
Gomez-Gardenes, Jesus ;
Moreno, Yamir ;
Arenas, Alex .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[7]   Spatio-temporal synchronization of recurrent epidemics [J].
He, DH ;
Stone, L .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 270 (1523) :1519-1526
[8]   Effect of parameter mismatch and noise on weak synchronization [J].
Kim, SY ;
Lim, W ;
Kim, Y .
PROGRESS OF THEORETICAL PHYSICS, 2002, 107 (02) :239-252
[9]   New approach to synchronization analysis of linearly coupled ordinary differential systems [J].
Lu, WL ;
Chen, TP .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (02) :214-230
[10]   Analysis of nonlinear synchronization dynamics of oscillator networks by Laplacian spectral methods [J].
McGraw, Patrick N. ;
Menzinger, Michael .
PHYSICAL REVIEW E, 2007, 75 (02)