Vectorial bent functions and their duals

被引:22
作者
Cesmelioglu, Ayca [1 ]
Meidl, Wilfried [2 ]
Pott, Alexander [3 ]
机构
[1] Altinbas Univ, Sch Engn & Nat Sci, TR-34217 Istanbul, Turkey
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergeratr 69, A-4040 Linz, Austria
[3] Otto Von Guericke Univ, Fac Math, D-39106 Magdeburg, Germany
基金
奥地利科学基金会;
关键词
Vectorial bent functions; Dual of a bent function; CONSTRUCTION; SPREADS; ODD;
D O I
10.1016/j.laa.2018.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the observation that for two (weakly regular) bent functions f, g for which also f + g is bent, the sum f* + g* of their duals f and g* is sometimes but not always bent, we initiate the study of duality for vectorial bent functions. We propose and investigate two concepts of self-duality for vectorial bent functions, self-duality and weak self-duality. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1974, THESIS
[2]  
Carlet Claude, 2010, International Journal of Information and Coding Theory, V1, P384, DOI 10.1504/IJICOT.2010.032864
[3]   Z2k-Linear codes [J].
Carlet, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1543-1547
[4]  
cegmelioglu A., PREPRINT
[5]   There Are Infinitely Many Bent Functions for Which the Dual Is Not Bent [J].
Cesmelioglu, Ayca ;
Meidl, Wilfried ;
Pott, Alexander .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) :5204-5208
[6]   ON THE DUAL OF (NON)-WEAKLY REGULAR BENT FUNCTIONS AND SELF-DUAL BENT FUNCTIONS [J].
Cesmelioglu, Ayca ;
Meidl, Wilfried ;
Pott, Alexander .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (04) :425-440
[7]   Generalized Maiorana-McFarland class and normality of p-ary bent functions [J].
Cesmelioglu, Ayca ;
Meidl, Wilfried ;
Pott, Alexander .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :105-117
[8]   A construction of bent functions from plateaued functions [J].
Cesmelioglu, Ayca ;
Meidl, Wilfried .
DESIGNS CODES AND CRYPTOGRAPHY, 2013, 66 (1-3) :231-242
[9]   Bent Functions of Maximal Degree [J].
Cesmelioglu, Ayca ;
Meidl, Wilfried .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) :1186-1190
[10]   A construction of weakly and non-weakly regular bent functions [J].
Cesmelioglu, Ayca ;
McGuire, Gary ;
Meidl, Wilfried .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (02) :420-429