The cardinality of bases in semilinear spaces over commutative semirings

被引:6
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutative semiring; Basis Cardinality; Invertible matrix; INVERTIBLE MATRICES;
D O I
10.1016/j.laa.2014.06.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over commutative semirings. It first discusses the cardinality of a basis and gives a necessary and sufficient condition that each basis has the same number of elements, which is then used to present the characterizations of bases, by the way, it obtains an equivalent description of an invertible matrix. It finally shows a necessary and sufficient condition that each basis has the same number of elements. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 20 条
  • [11] MCDONALD BR, 1984, LINEAR ALGEBRA COMMU
  • [12] Perfilieva I., 2004, P 7 CZECH JAP SEM DA, P127
  • [13] Determinantal identities over commutative semirings
    Poplin, PL
    Hartwig, RE
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 99 - 132
  • [14] INVERSION OF MATRICES OVER A COMMUTATIVE SEMIRING
    REUTENAUER, C
    STRAUBING, H
    [J]. JOURNAL OF ALGEBRA, 1984, 88 (02) : 350 - 360
  • [15] Standard orthogonal vectors in semilinear spaces and their applications
    Shu, Qian-yu
    Wang, Xue-ping
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) : 2733 - 2754
  • [16] Bases in semilinear spaces over zerosumfree semirings
    Shu, Qian-yu
    Wang, Xue-ping
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2681 - 2692
  • [17] On invertible matrices over commutative semirings
    Tan, Yi-Jia
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06) : 710 - 724
  • [18] Bases in semilinear spaces over join-semirings
    Zhao, Shan
    Wang, Xue-ping
    [J]. FUZZY SETS AND SYSTEMS, 2011, 182 (01) : 93 - 100
  • [19] Invertible matrices and semilinear spaces over commutative semirings
    Zhao, Shan
    Wang, Xue-ping
    [J]. INFORMATION SCIENCES, 2010, 180 (24) : 5115 - 5124
  • [20] Zimmermann U., 1981, Linear and combinatorial optimization in ordered algebraic structures