The cardinality of bases in semilinear spaces over commutative semirings

被引:6
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Commutative semiring; Basis Cardinality; Invertible matrix; INVERTIBLE MATRICES;
D O I
10.1016/j.laa.2014.06.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the cardinality of a basis in semilinear spaces of n-dimensional vectors over commutative semirings. It first discusses the cardinality of a basis and gives a necessary and sufficient condition that each basis has the same number of elements, which is then used to present the characterizations of bases, by the way, it obtains an equivalent description of an invertible matrix. It finally shows a necessary and sufficient condition that each basis has the same number of elements. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 20 条
  • [1] Max-algebra: the linear algebra of combinatorics?
    Butkovic, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 (367) : 313 - 335
  • [2] Cao Z., 1984, INCLINE ALGEBRA APPL
  • [3] Linear independence in bottleneck algebras
    Cechlarova, K
    Plavka, J
    [J]. FUZZY SETS AND SYSTEMS, 1996, 77 (03) : 337 - 348
  • [4] Cuninghame-Green R. A., 1979, Lecture Notes in Economics and Mathematical Systems, V166
  • [5] Bases in max-algebra
    Cuninghame-Green, RA
    Butkovic, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 : 107 - 120
  • [6] Algebraic analysis of fuzzy systems
    Di Nola, Antonio
    Lettieri, Ada
    Perfilieva, Irina
    Novak, Vilem
    [J]. FUZZY SETS AND SYSTEMS, 2007, 158 (01) : 1 - 22
  • [7] Golan J.S., 2010, SEMIRINGS THEIR APPL, DOI [10.1007/978-94-015-9333-5, DOI 10.1007/978-94-015-9333-5]
  • [8] Gondran M, 1984, ANN DISCRETE MATH, V19, P147
  • [9] Note on cardinality of bases in semilinear spaces over zerosumfree semirings
    Kanan, Asmaa M.
    Petrovic, Zoran Z.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2795 - 2799
  • [10] GENERALIZED FUZZY MATRICES
    KIM, KH
    ROUSH, FW
    [J]. FUZZY SETS AND SYSTEMS, 1980, 4 (03) : 293 - 315