Scintillation and aperture averaging for Gaussian beams through non-Kolmogorov maritime atmospheric turbulence channels

被引:74
作者
Cheng, Mingjian [1 ,2 ]
Guo, Lixin [1 ,2 ]
Zhang, Yixin [3 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
关键词
OPTICAL WAVES PROPAGATION; IRRADIANCE SCINTILLATION; PROBABILITY DENSITY; SPECTRAL MODEL; FLUCTUATIONS; ENVIRONMENT; VARIANCE; SYSTEM;
D O I
10.1364/OE.23.032606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytic expression of the receiver-aperture-averaged scintillation index (SI) was derived for Gaussian-beam waves propagating through non-Kolmogorov maritime atmospheric environment by establishing a generalized maritime atmospheric spectrum model. The error performance of an intensity-modulated and direct-detection (IM/DD) free-space optical (FSO) system was investigated using the derived SI and log-normal distribution. The combined effects of non-Kolmogorov power-law exponent, turbulence inner scale, structure parameter, propagation distance, receiver aperture, and wavelength were also evaluated. Results show that inner scale and power-law exponent obviously affect SI. Large wavelength and receiver aperture can mitigate the effects of turbulence. The proposed model can be evaluated ship-to-ship/shore FSO system performance. (C) 2015 Optical Society of America
引用
收藏
页码:32606 / 32621
页数:16
相关论文
共 50 条
[31]   The analysis of anisotropic the non-Kolmogorov turbulence effect on asymmetrical Gaussian beam propagation in a marine atmosphere [J].
Ata, Yalcin ;
Baykal, Yahya .
LASER PHYSICS, 2019, 29 (07)
[32]   Optical scintillations and fade statistics for FSO communications through moderate-to-strong non-Kolmogorov turbulence [J].
Yi, Xiang ;
Liu, Zengji ;
Yue, Peng .
OPTICS AND LASER TECHNOLOGY, 2013, 47 :199-207
[33]   Fiber-coupling efficiency for optical wave propagating through non-Kolmogorov turbulence [J].
Tan, Liying ;
Zhai, Chao ;
Yu, Siyuan ;
Cao, Yubin ;
Ma, Jing .
OPTICS COMMUNICATIONS, 2014, 331 :291-296
[34]   WANDER OF A GAUSSIAN-BEAM WAVE PROPAGATED THROUGH A NON-KOLMOGOROV TURBULENT ATMOSPHERE [J].
Du, Wenhe ;
Yang, Jingxuan ;
Yao, Zhongmin ;
Lu, Junguo ;
Liu, Daosen ;
Cui, Quanling .
JOURNAL OF RUSSIAN LASER RESEARCH, 2014, 35 (04) :416-423
[35]   Scintillation analysis of LIDAR systems operating in weak-to-strong non-Kolmogorov turbulence: unresolved target case [J].
Toselli, Italo ;
Gladysz, Szymon ;
Filimonov, Grigorii .
JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04)
[36]   Temporal frequency spread of optical wave propagation through anisotropic non-Kolmogorov turbulence [J].
Kotiang, Stephen ;
Choi, Jaeho .
JOURNAL OF OPTICS, 2015, 17 (12)
[37]   Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence [J].
Du, Wenhe ;
Tan, Liying ;
Ma, Jing ;
Jiang, Yijun .
OPTICS EXPRESS, 2010, 18 (06) :5763-5775
[38]   Bessel-Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence [J].
Gao, Jie ;
Zhu, Yu ;
Wang, Donglin ;
Zhang, Yixin ;
Hu, Zhengda ;
Cheng, Mingjian .
PHOTONICS RESEARCH, 2016, 4 (02) :30-34
[39]   Inner- and outer-scale effects on the scintillation index of an optical wave propagating through moderate-to-strong non-Kolmogorov turbulence [J].
Yi, Xiang ;
Liu, Zengji ;
Yue, Peng .
OPTICS EXPRESS, 2012, 20 (04) :4232-4247
[40]   Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence [J].
Ma, Jing ;
Fu, Yulong ;
Tan, Liying ;
Yu, Siyuan ;
Xie, Xiaolong .
JOURNAL OF MODERN OPTICS, 2018, 65 (09) :1063-1071