Radial forging force prediction through MR, ANN, and ANFIS models

被引:22
作者
Azari, A. [1 ]
Poursina, M. [2 ]
Poursina, D. [3 ]
机构
[1] Univ Shahrekord, Dept Mech Engn, Shahrekord 8818634141, Iran
[2] Univ Isfahan, Dept Mech Engn, Esfahan 8174673441, Iran
[3] Univ Isfahan, Fac Sci, Esfahan 8174673441, Iran
关键词
Radial forging; Forging force; ANN; ANFIS; MR; ALGORITHM-BASED OPTIMIZATION; ARTIFICIAL NEURAL-NETWORKS; GENETIC ALGORITHM; DESIGN;
D O I
10.1007/s00521-014-1562-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of finite element method and intelligent systems techniques to predict the applied force during the radial forging process is studied. Radial forging is a unique process used for the precision forging of round and tubular components, with or without an internal profile. More than 800 radial forging machines are currently operating worldwide. Since the maximum forging force per die is constant, determining the die force before the process can prevent die damage and material wastage. Then, the results of the FE simulation are applied for two intelligent forecasting systems in artificial neural network and adaptive neuro-fuzzy inference system. Initial billet temperature, die inlet angle, feed rate, and reduction in cross-section are applied as input parameters, and radial forging force is applied as the output parameter. Finally, the results of these two intelligent systems are compared with the multiple regressions method. A sensitivity analysis is carried out to determine how the radial forging force is influenced by the input parameters.
引用
收藏
页码:849 / 858
页数:10
相关论文
共 29 条
[1]   Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming [J].
Abbassi, Fethi ;
Belhadj, Touhami ;
Mistou, Sebastien ;
Zghal, Ali .
MATERIALS & DESIGN, 2013, 45 :605-615
[2]  
Abedian A, 2007, AIP CONF PROC, V908, P963, DOI 10.1063/1.2740935
[3]  
[Anonymous], 2000, INTRO NEUROFUZZY SYS
[4]  
[Anonymous], 1997, IEEE T AUTOM CONTROL, DOI DOI 10.1109/TAC.1997.633847
[5]   A hybrid approach to the development of a multilayer neural network for wear and fatigue prediction in metal forming [J].
Belfiore, N. P. ;
Ianniello, F. ;
Stocchi, D. ;
Casadei, F. ;
Bazzoni, D. ;
Finzi, A. ;
Carrara, S. ;
Gonzalez, J. R. ;
Llanos, J. M. ;
Heikkila, I. ;
Penalba, F. ;
Gomez, X. .
TRIBOLOGY INTERNATIONAL, 2007, 40 (10-12) :1705-1717
[6]   Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS [J].
Chen, Bindi ;
Matthews, Peter C. ;
Tavner, Peter J. .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (17) :6863-6876
[7]   Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function [J].
Das, P. ;
Mukherjee, S. ;
Ganguly, S. ;
Bhattacharyay, B. K. ;
Datta, S. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (01) :104-110
[8]   Modelling of forming limit diagram of perforated commercial pure aluminium sheets using artificial neural network [J].
Elangovan, K. ;
Narayanan, C. Sathiya ;
Narayanasamy, R. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 47 (04) :1072-1078
[9]   NEURAL NETWORK ANALYSIS APPLICATION TO PERMEABILITY DETERMINATION OF FIBERGLASS AND CARBON PREFORMS [J].
Golestanian, Hossein ;
Poursina, Mehrdad .
CHINESE JOURNAL OF POLYMER SCIENCE, 2009, 27 (02) :221-229
[10]   A neural network-assisted finite element analysis of cold flat rolling [J].
Gudur, P. P. ;
Dixit, U. S. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (01) :43-52