Super Metric Spaces

被引:3
作者
Karapinar, Erdal [1 ,2 ,3 ]
Khojasteh, Farshid [4 ]
机构
[1] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot City 820000, Binh Duong Prov, Vietnam
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Islamic Azad Univ, Dept Math, Arak Branch, Arak, Iran
关键词
super metric space; fixed point; contraction; FIXED-POINT THEOREMS;
D O I
10.2298/FIL2210545K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to propose a new generalization of metric space which may open a new framework. As an application, we consider the analog of Banach contraction mapping principle that works properly.
引用
收藏
页码:3545 / 3549
页数:5
相关论文
共 25 条
  • [1] Remarks on Some Recent Fixed Point Results on Quaternion-Valued Metric Spaces
    Agarwal, Ravi P.
    Alsulami, Hamed H.
    Karapinar, Erdal
    Khojasteh, Farshid
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] Fixed Point Theorems in Quaternion-Valued Metric Spaces
    Ahmed, Ahmed El-Sayed
    Omran, Saleh
    Asad, Abdalla J.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [3] [Anonymous], 1963, Math. Nachr., DOI [DOI 10.1002/MANA.19630260109, 10.1002/mana.19630260109]
  • [4] Asadi Mehdi, 2017, East Asian Mathematical Journal, V33, P559, DOI 10.7858/eamj.2017.039
  • [5] New extension of p-metric spaces with some fixed-point results on M-metric spaces
    Asadi, Mehdi
    Karapinar, Erdal
    Salimi, Peyman
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [6] COMMON FIXED POINT THEOREMS IN COMPLEX VALUED METRIC SPACES
    Azam, Akbar
    Fisher, Brian
    Khan, M.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (03) : 243 - 253
  • [7] Bakhtin IA., 1989, Funct. Anal, V30, P26, DOI DOI 10.1039/AP9892600037
  • [8] Multiplicative calculus and its applications
    Bashirov, Agamirza E.
    Kurpinar, Emine Misirli
    Ozyapici, Ali
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 36 - 48
  • [9] Berinde V., 1993, SEMINAR FIXED POINT, V3, P3
  • [10] Branciari A., 2002, Int J Math Math Sci, V29, P531, DOI 10.1155/S0161171202007524