End-to-End Deep Diagnosis of X-ray Images

被引:0
作者
Urinbayev, Kudaibergen [1 ]
Orazbek, Yerassyl [1 ]
Nurambek, Yernur [1 ]
Mirzakhmetov, Almas [1 ]
Varol, Huseyin Atakan [1 ]
机构
[1] Nazarbayev Univ, Inst Smart Syst & Artificial Intelligence, 53 Kabanbay Batyr Ave, Nur Sultan 010000, Kazakhstan
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
关键词
Chest X-ray images; computer-aided diagnosis; digital radiography; deep learning; neural networks; explanatory visualization; SEGMENTATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present an end-to-end deep learning framework for X-ray image diagnosis. As the first step, our system determines whether a submitted image is an X-ray or not. After it classifies the type of the X-ray, it runs the dedicated abnormality classification network. In this work, we only focus on the chest X-rays for abnormality classification. However, the system can be extended to other X-ray types easily. Our deep learning classifiers are based on DenseNet-121 architecture. The test set accuracy obtained for 'X-ray or Not', 'X-ray Type Classification', and 'Chest Abnormality Classification' tasks are 0.987, 0.976, and 0.947, respectively, resulting into an end-to-end accuracy of 0.91. For achieving better results than the state-of-the-art in the 'Chest Abnormality Classification', we utilize the new RAdam optimizer. We also use Gradient-weighted Class Activation Mapping for visual explanation of the results. Our results show the feasibility of a generalized online projectional radiography diagnosis system.
引用
收藏
页码:2182 / 2185
页数:4
相关论文
共 20 条
  • [1] [Anonymous], 2018, ACCELERATED DL RL
  • [2] [Anonymous], 2017, CHEXNET RADIOLOGIST
  • [3] [Anonymous], 2019, ARXIV190111210
  • [4] Berner Brockman Chan Cheung Debiak Dennison Farhi Fischer Hashme Hesse Jozefowicz Gray Olsson Pachocki Petrov Pinto Raiman Salimans Schlatter Schneider Sidor Sutskever Christopher Greg Brooke Vicki Prze- myslaw Christy David Quirin Shariq Chris Rafal Scott Catherine Jakub Michael Henrique P. d. O. Jonathan Tim Jeremy Jonas Szymon Ilya, 2019, ARXIV191206680CSLG
  • [5] Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets
    Cha, Kenny H.
    Hadjiiski, Lubomir
    Samala, Ravi K.
    Chan, Heang-Ping
    Caoili, Elaine M.
    Cohan, Richard H.
    [J]. MEDICAL PHYSICS, 2016, 43 (04) : 1882 - 1896
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] A guide to deep learning in healthcare
    Esteva, Andre
    Robicquet, Alexandre
    Ramsundar, Bharath
    Kuleshov, Volodymyr
    DePristo, Mark
    Chou, Katherine
    Cui, Claire
    Corrado, Greg
    Thrun, Sebastian
    Dean, Jeff
    [J]. NATURE MEDICINE, 2019, 25 (01) : 24 - 29
  • [8] IMAGE FEATURE ANALYSIS AND COMPUTER-AIDED DIAGNOSIS IN DIGITAL RADIOGRAPHY .3. AUTOMATED DETECTION OF NODULES IN PERIPHERAL LUNG FIELDS
    GIGER, ML
    DOI, K
    MACMAHON, H
    [J]. MEDICAL PHYSICS, 1988, 15 (02) : 158 - 166
  • [9] Haskins G., 2020, ARXIV190302026CSEESS
  • [10] Improvement of image quality at CT and MRI using deep learning
    Higaki, Toru
    Nakamura, Yuko
    Tatsugami, Fuminari
    Nakaura, Takeshi
    Awai, Kazuo
    [J]. JAPANESE JOURNAL OF RADIOLOGY, 2019, 37 (01) : 73 - 80