Photonics for artificial intelligence and neuromorphic computing

被引:1156
作者
Shastri, Bhavin J. [1 ,2 ]
Tait, Alexander N. [2 ,3 ]
de Lima, T. Ferreira [2 ]
Pernice, Wolfram H. P. [4 ,5 ]
Bhaskaran, Harish [6 ]
Wright, C. D. [7 ]
Prucnal, Paul R. [2 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] NIST, Appl Phys Div, Boulder, CO 80309 USA
[4] Univ Munster, Inst Phys, Munster, Germany
[5] Univ Munster, Ctr Soft Nanosci SoN, Munster, Germany
[6] Univ Oxford, Dept Mat, Oxford, England
[7] Univ Exeter, Dept Engn, Exeter, Devon, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
NEURAL-NETWORKS; LITHIUM-NIOBATE; MODULATOR; LASERS; IMPLEMENTATION; INTEGRATION; PERFORMANCE; MACHINE; MEMORY; EXCITABILITY;
D O I
10.1038/s41566-020-00754-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 136 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]   ITO-based electro-absorption modulator for photonic neural activation function [J].
Amin, R. ;
George, J. K. ;
Sun, S. ;
de Lima, T. Ferreira ;
Tait, A. N. ;
Khurgin, J. B. ;
Miscuglio, M. ;
Shastri, B. J. ;
Prucnal, P. R. ;
El-Ghazawi, T. ;
Sorger, V. J. .
APL MATERIALS, 2019, 7 (08)
[3]   Human action recognition with a large-scale brain-inspired photonic computer [J].
Antonik, Piotr ;
Marsal, Nicolas ;
Brunner, Daniel ;
Rontani, Damien .
NATURE MACHINE INTELLIGENCE, 2019, 1 (11) :530-537
[4]   Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs) [J].
Bangari, Viraj ;
Marquez, Bicky A. ;
Miller, Heidi B. ;
Tait, Alexander N. ;
Nahmias, Mitchell A. ;
de Lima, Thomas Ferreira ;
Peng, Hsuan-Tung ;
Prucnal, Paul R. ;
Shastri, Bhavin J. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[5]   Roadmap on emerging hardware and technology for machine learning [J].
Berggren, Karl ;
Xia, Qiangfei ;
Likharev, Konstantin K. ;
Strukov, Dmitri B. ;
Jiang, Hao ;
Mikolajick, Thomas ;
Querlioz, Damien ;
Salinga, Martin ;
Erickson, John R. ;
Pi, Shuang ;
Xiong, Feng ;
Lin, Peng ;
Li, Can ;
Chen, Yu ;
Xiong, Shisheng ;
Hoskins, Brian D. ;
Daniels, Matthew W. ;
Madhavan, Advait ;
Liddle, James A. ;
McClelland, Jabez J. ;
Yang, Yuchao ;
Rupp, Jennifer ;
Nonnenmann, Stephen S. ;
Cheng, Kwang-Ting ;
Gong, Nanbo ;
Lastras-Montano, Miguel Angel ;
Talin, A. Alec ;
Salleo, Alberto ;
Shastri, Bhavin J. ;
de Lima, Thomas Ferreira ;
Prucnal, Paul ;
Tait, Alexander N. ;
Shen, Yichen ;
Meng, Huaiyu ;
Roques-Carmes, Charles ;
Cheng, Zengguang ;
Bhaskaran, Harish ;
Jariwala, Deep ;
Wang, Han ;
Shainline, Jeffrey M. ;
Segall, Kenneth ;
Yang, J. Joshua ;
Roy, Kaushik ;
Datta, Suman ;
Raychowdhury, Arijit .
NANOTECHNOLOGY, 2021, 32 (01)
[6]   Excitability in optical systems close to Z2-symmetry [J].
Beri, Stefano ;
Mashall, Lilia ;
Gelens, Lendert ;
Van der Sande, Guy ;
Mezosi, Gabor ;
Sorel, Marc ;
Danckaert, Jan ;
Verschaffelt, Guy .
PHYSICS LETTERS A, 2010, 374 (05) :739-743
[7]   Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding [J].
Billah, Muhammad Rodlin ;
Blaicher, Matthias ;
Hoose, Tobias ;
Dietrich, Philipp-Immanuel ;
Marin-Palomo, Pablo ;
Lindenmann, Nicole ;
Nesic, Aleksandar ;
Hofmann, Andreas ;
Troppenz, Ute ;
Moehrle, Martin ;
Randel, Sebastian ;
Freude, Wolfgang ;
Koos, Christian .
OPTICA, 2018, 5 (07) :876-883
[8]   Programmable Photonics: An Opportunity for an Accessible Large-Volume PIC Ecosystem [J].
Bogaerts, Wim ;
Rahim, Abdul .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (05)
[9]   Silicon Photonics Circuit Design: Methods, Tools and Challenges [J].
Bogaerts, Wim ;
Chrostowski, Lukas .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[10]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73