Calculation of Lyapunov exponents in impacted beam on distributed contact

被引:7
作者
Kang, Jaeyoung [1 ]
机构
[1] Inha Univ, Coll Engn, Dept Mech Engn, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
Chaos; Beam; Lyapunov exponent; Vibro-impact; Distributed contact; CANTILEVER BEAM; DISC BRAKE; SYSTEMS; BIFURCATIONS; MOTION; PATTERN; MODELS;
D O I
10.1016/j.jsv.2018.06.023
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents the calculation of Lyapunov exponents in a beam subjected to distributed impact. In this case, discontinuity sporadically occurs over the contacted area. The impact area is spatially discretized and the transition condition at impact instance is applied to all impact nodes in the finite element manner. The solution of the continuous vibration in the impacted beam is expressed in the modal expansion form. Then, the spectra of Lyapunov exponents in the periodic and chaotic motion are estimated for the truncated number of modes. Numerical results show that the calculated largest Lyapunov exponent agrees with the bifurcation plot. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 303
页数:9
相关论文
共 27 条
[1]  
Benettin G., 1980, Meccanica, V15, P9, DOI DOI 10.1007/BF02128236
[2]   The effect of discretization on the numerical simulation of the vibrations of the impacting cantilever beam [J].
Blazejczyk-Okolewska, Barbara ;
Czolczynski, Krzysztof ;
Kapitaniak, T .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :3073-3090
[3]   The effect of the contact model on the impact-vibration response of continuous and discrete systems [J].
Brake, M. R. .
JOURNAL OF SOUND AND VIBRATION, 2013, 332 (15) :3849-3878
[4]   Lyapunov exponents in discrete modelling of a cantilever beam impacting on a moving base [J].
Czolczynski, Krzysztof ;
Okolewski, Andrzej ;
Blazejczyk-Okolewska, Barbara .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 88 :74-84
[5]   Suppressing grazing chaos in impacting system by structural nonlinearity [J].
de Souza, S. L. T. ;
Wiercigroch, M. ;
Caldas, I. L. ;
Balthazar, J. M. .
CHAOS SOLITONS & FRACTALS, 2008, 38 (03) :864-869
[6]   Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes [J].
de Souza, SLT ;
Caldas, IL ;
Viana, RL ;
Balthazar, JM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :763-772
[7]   Calculation of Lyapunov exponents in systems with impacts [J].
de Souza, SLT ;
Caldas, IL .
CHAOS SOLITONS & FRACTALS, 2004, 19 (03) :569-579
[8]   Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam [J].
Dick, Andrew J. ;
Balachandran, Balakumar ;
Yabuno, Hiroshi ;
Numatsu, Masatoshi ;
Hayashi, Keiichi ;
Kuroda, Masaharu ;
Ashida, Kiwamu .
NONLINEAR DYNAMICS, 2009, 57 (03) :335-349
[9]   Cumulative effect of structural nonlinearities: chaotic dynamics of cantilever beam system with impacts [J].
Emans, J ;
Wiercigroch, M ;
Krivtsov, AM .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1661-1670
[10]   BIFURCATIONS IN IMPACT OSCILLATIONS [J].
FOALE, S ;
BISHOP, SR .
NONLINEAR DYNAMICS, 1994, 6 (03) :285-299