Exact entanglement renormalization for string-net models

被引:67
作者
Koenig, Robert [1 ]
Reichardt, Ben W. [2 ]
Vidal, Guifre [3 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 19期
基金
澳大利亚研究理事会;
关键词
ground states; quantum computing; quantum entanglement; renormalisation; wave functions; TOPOLOGICAL QUANTUM COMPUTATION; HALL STATES; ANYONS;
D O I
10.1103/PhysRevB.79.195123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct an explicit renormalization-group transformation for Levin and Wen's string-net models on a hexagonal lattice. The transformation leaves invariant the ground-state "fixed-point" wave function of the string-net condensed phase. Our construction also produces an exact representation of the wave function in terms of the multiscale entanglement renormalization ansatz (MERA). This sets the stage for efficient numerical simulations of string-net models using MERA algorithms. It also provides an explicit quantum circuit to prepare the string-net ground-state wave function using a quantum computer.
引用
收藏
页数:6
相关论文
共 28 条
[1]   Entanglement renormalization and topological order [J].
Aguado, Miguel ;
Vidal, Guifre .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[2]  
[Anonymous], 1998, Categories for the working mathematician
[3]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[4]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[5]   Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics [J].
Camino, FE ;
Zhou, W ;
Goldman, VJ .
PHYSICAL REVIEW B, 2005, 72 (07)
[6]   Algorithms for entanglement renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW B, 2009, 79 (14)
[7]   Realizing non-Abelian statistics in time-reversal-invariant systems [J].
Fendley, P ;
Fradkin, E .
PHYSICAL REVIEW B, 2005, 72 (02)
[8]   Topological order from quantum loops and nets [J].
Fendley, Paul .
ANNALS OF PHYSICS, 2008, 323 (12) :3113-3136
[9]   From String Nets to Nonabelions [J].
Fidkowski, Lukasz ;
Freedman, Michael ;
Nayak, Chetan ;
Walker, Kevin ;
Wang, Zhenghan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) :805-827
[10]   Line of critical points in 2+1 dimensions: Quantum critical loop gases and non-Abelian gauge theory [J].
Freedman, M ;
Nayak, C ;
Shtengel, K .
PHYSICAL REVIEW LETTERS, 2005, 94 (14)