The vibrational motion of a spring pendulum in a fluid flow

被引:46
作者
Bek, M. A. [1 ,2 ]
Amer, T. S. [3 ]
Sirwah, Magdy A. [3 ]
Awrejcewicz, Jan [4 ]
Arab, Asmaa A. [1 ]
机构
[1] Tanta Univ, Fac Engn, Dept Phys & Engn Math, Tanta 31734, Egypt
[2] Modern Sci & Arts Univ, Fac Engn, Gen Syst Engn Dept, Wahat Rd, October 12566, Egypt
[3] Tanta Univ, Fac Sci, Math Dept, Tanta 31527, Egypt
[4] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowski St, PL-90924 Lodz, Poland
关键词
Nonlinear motion; Multiple scales technique; Fixed points; Stability; Resonance; RIGID-BODY; RESONANCES;
D O I
10.1016/j.rinp.2020.103465
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the response of two degrees of freedom for a nonlinear dynamical model represented by the motion of a damped spring pendulum in an inviscid fluid flow is investigated. The governing system of motion is obtained using Lagrange's equations. The equations of this system are solved utilizing the multiple scales method to obtain the asymptotic solutions up to the second approximation. Resonance cases of the system are classified and the modulation equations are achieved. The steady state solutions are examined in view of the solvability conditions. The dynamical behavior regarding the time history of the considered motion, the resonance curves and the steady state solutions are performed graphically. The effect of different parameters on the motion is analyzed using non-linear stability analysis. The importance of this model is due to its various applications which centric on engineering vibrating systems.
引用
收藏
页数:15
相关论文
共 30 条
[1]   On the motion of a harmonically excited damped spring pendulum in an elliptic path [J].
Amer, T. S. ;
Bek, M. A. ;
Abohamer, M. K. .
MECHANICS RESEARCH COMMUNICATIONS, 2019, 95 :23-34
[2]   On the vibrational analysis for the motion of a harmonically damped rigid body pendulum [J].
Amer, T. S. ;
Bek, M. A. ;
Abouhmr, M. K. .
NONLINEAR DYNAMICS, 2018, 91 (04) :2485-2502
[3]   lThe Dynamical Behavior of a Rigid Body Relative Equilibrium Position [J].
Amer, T. S. .
ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
[4]   On the Motion of Harmonically Excited Spring Pendulum in Elliptic Path Near Resonances [J].
Amer, T. S. ;
Bek, M. A. ;
Hamada, I. S. .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[5]   Chaotic responses of a harmonically excited spring pendulum moving in circular path [J].
Amer, T. S. ;
Bek, M. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :3196-3202
[6]   On the motion of a pendulum attached with tuned absorber near resonances [J].
Amer, W. S. ;
Bek, M. A. ;
Abohamer, M. K. .
RESULTS IN PHYSICS, 2018, 11 :291-301
[7]  
Awrejcewicz J., 2010, MESA, V1, P1
[8]   Stationary and transient resonant response of a spring pendulum [J].
Awrejcewicz, Jan ;
Starosta, Roman ;
Sypniewska-Kaminska, Grazyna .
IUTAM SYMPOSIUM ANALYTICAL METHODS IN NONLINEAR DYNAMICS, 2016, 19 :201-208
[9]  
Chernousko F.L., 2017, Evolution of Motions of a Rigid Body About its Center of Mass, DOI [10.1007/978-3-319-53928-7, DOI 10.1007/978-3-319-53928-7]
[10]   Vibration reduction of a three DOF non-linear spring pendulum [J].
Eissa, M. ;
Sayed, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :465-488