Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy

被引:59
作者
Yu, Hui [1 ,2 ]
Jing, Wenwen [2 ]
Iriya, Rafael [2 ,3 ]
Yang, Yunze [2 ]
Syal, Karan [2 ]
Mo, Manni [2 ,3 ]
Grys, Thomas E. [5 ]
Haydel, Shelley E. [6 ,7 ]
Wang, Shaopeng [2 ,3 ]
Tao, Nongjian [2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Personalized Med, Shanghai 200030, Peoples R China
[2] Arizona State Univ, Biodesign Ctr Biosensors & Bioelect, Tempe, AZ 85287 USA
[3] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210093, Jiangsu, Peoples R China
[4] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[5] Mayo Clin, Dept Lab Med & Pathol, Phoenix, AZ 85054 USA
[6] Arizona State Univ, Biodesign Ctr Immunotherapy Vaccines & Virotherap, Tempe, AZ 85287 USA
[7] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
关键词
ANTIBIOTIC-RESISTANCE; BACTERIAL-GROWTH; IDENTIFICATION; CAPTURE;
D O I
10.1021/acs.analchem.8b01128
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Timely determination of antimicrobial susceptibility for a bacterial infection enables precision prescription, shortens treatment time, and helps minimize the spread of antibiotic resistant infections. Current antimicrobial susceptibility testing (AST) methods often take several days and thus impede these clinical and health benefits. Here, we present an AST method by imaging freely moving bacterial cells in urine in real time and analyzing the videos with a deep learning algorithm. The deep learning algorithm determines if an antibiotic inhibits a bacterial cell by learning multiple phenotypic features of the cell without the need for defining and quantifying each feature. We apply the method to urinary tract infection, a common infection that affects millions of people, to determine the minimum inhibitory concentration of pathogens from both bacteria spiked urine and clinical infected urine samples for different antibiotics within 30 min and validate the results with the gold standard broth macrodilution method. The deep learning video microscopy-based AST holds great potential to contribute to the solution of increasing drug-resistant infections.
引用
收藏
页码:6314 / 6322
页数:9
相关论文
共 39 条
  • [21] Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors
    Kinnunen, Paivo
    Sinn, Irene
    McNaughton, Brandon H.
    Newton, Duane W.
    Burns, Mark A.
    Kopelman, Raoul
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) : 2751 - 2755
  • [22] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [23] Swimming in circles: Motion of bacteria near solid boundaries
    Lauga, E
    DiLuzio, WR
    Whitesides, GM
    Stone, HA
    [J]. BIOPHYSICAL JOURNAL, 2006, 90 (02) : 400 - 412
  • [24] Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics
    Lee, CC
    Sui, GD
    Elizarov, A
    Shu, CYJ
    Shin, YS
    Dooley, AN
    Huang, J
    Daridon, A
    Wyatt, P
    Stout, D
    Kolb, HC
    Witte, ON
    Satyamurthy, N
    Heath, JR
    Phelps, ME
    Quake, SR
    Tseng, HR
    [J]. SCIENCE, 2005, 310 (5755) : 1793 - 1796
  • [25] Nanomechanical motion of Escherichia coli adhered to a surface
    Lissandrello, C.
    Inci, F.
    Francom, M.
    Paul, M. R.
    Demirci, U.
    Ekinci, K. L.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (11)
  • [26] Rapid Antimicrobial Susceptibility Testing with Electrokinetics Enhanced Biosensors for Diagnosis of Acute Bacterial Infections
    Liu, Tingting
    Lu, Yi
    Gau, Vincent
    Liao, Joseph C.
    Wong, Pak Kin
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (11) : 2314 - 2321
  • [27] Longo G, 2013, NAT NANOTECHNOL, V8, P522, DOI [10.1038/NNANO.2013.120, 10.1038/nnano.2013.120]
  • [28] Antibiotic susceptibility testing at a screen-printed carbon electrode array
    Mann, Thomas S.
    Mikkelsen, Susan R.
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (03) : 843 - 848
  • [29] THE CRISIS IN ANTIBIOTIC-RESISTANCE
    NEU, HC
    [J]. SCIENCE, 1992, 257 (5073) : 1064 - 1073
  • [30] Ng JYH, 2015, PROC CVPR IEEE, P4694, DOI 10.1109/CVPR.2015.7299101